Key-Homomorphic Signatures

and Applications to Simulation Sound Extractable NIZK

David Derler, Graz University of Technology March 22, 2017—Paderborn University

Key-Homomorphic Signatures

Example 1

- Given two signatures σ_1 and σ_2 on m
- · Valid under pk, and pk,
- \Rightarrow Publicly compute σ' valid under $pk' = pk_1 \circ pk_2$

Example 2

- · Given a signature σ on m valid under pk
- Adapt σ to σ' valid under $\mathbf{pk'}$
- Well defined relationship between pk and pk'

Extremely simple, yet very powerful!

· Never explicitly studied before

1

Related Work

Implicit usage in signatures schemes:

- Security under related (re-randomized) keys [BCM11,BPT12]
- DSS under randomizable keys [FKM+16]
- DSS from canonical identification schemes [FF13,KMP16]

Other directions:

- Key-homomorphic encryption [AHI11, Rot11, BGG⁺14, DMS16]
- · (Constrained) key-homomorphic PRFs [BLMR13, BP14, BFP+15]
- Key-homomorphic projective hashes [BJL16, BJL17]

Results in [DS16]

Covered in this talk

Variants of key-homomorphisms

Secret-Key-to-Public-Key Homomorphism

Secret keys and public keys live in groups $\mathbb G$ and $\mathbb H$

• Group homomorphism $\mu: \mathbb{H} \to \mathbb{G}$

$$\forall \mathsf{sk}, \mathsf{sk}' \in \mathbb{H} : \mu(\mathsf{sk} + \mathsf{sk}') = \mu(\mathsf{sk}) + \mu(\mathsf{sk}')$$

+ For all $(sk, pk) \leftarrow KeyGen(1^{\kappa})$ it must hold that

$$pk = \mu(sk)$$

Keys may also be vectors:

- Straightforward extension
- Not made explicit for compactness

Φ⁺-Key-Homomorphic Signatures

Class of functions Φ^+

- · Representing linear shifts
- Functions identified by "shift amount" △

Conventional signature scheme

- + Secret-key-to-public-key homomorphism
- + Additional PPT algorithm

$$(\mathsf{pk'}, \sigma') \leftarrow \mathsf{Adapt}(\mathsf{pk}, m, \sigma, \Delta)$$

 \Rightarrow Shift signature from pk to $pk' = pk \cdot \mu(\Delta)$

Question: possible to have Adapt' taking $\mu(\Delta)$ instead of Δ ?

No: efficient Adapt' would imply an UUF-NMA adversary

Adaptability of Signatures

Identical distribution of fresh and adapted signatures

• "Initial" signature on *m* under **sk** not revealed

$$Adapt(pk, m, Sign(sk, m), \Delta)$$

$$(\mathsf{pk} \cdot \mu(\Delta), \mathsf{Sign}(\mathsf{sk} + \Delta, m))$$

Perfect Adaption of Signatures

Identical distribution of fresh and adapted signatures

• Even when seeing the initial signatures $\sigma \leftarrow \text{Sign}(sk, m)$

$$(\sigma, \mathsf{Adapt}(\mathsf{pk}, m, \sigma, \Delta))$$

$$(\sigma, \mathsf{pk} \cdot \mu(\Delta), \mathsf{Sign}(\mathsf{sk} + \Delta, m))$$

Publicly Key-Homomorphic Signatures

Conventional signature scheme with

- · Secret-key-to-public-key homomorphism
- + Additional algorithm Combine

$$(\hat{\mathsf{pk}}, \hat{\sigma}) \leftarrow \mathsf{Combine}((\mathsf{pk}_i)_{i=1}^n, m, (\sigma_i)_{i=1}^n)$$

- · Combine multiple signatures on *m* under distinct keys
- Combined key $\hat{\mathbf{pk}} = \prod_{i=1}^{n} \mathbf{pk}_{i}$

Examples of Key-Homomorphic Schemes

Publicly key-homomorphic schemes

- BLS signatures [BLS04]
- CL signature variant [CHP12]
- Waters' signatures with shared params [Wato5, BFG13]

Adaptable schemes

- · Schnorr signatures [Sch91]
- Katz-Wang signatures [KWo3, GJKWo7]

Perfectly adaptable schemes

- BLS signatures [BLSo4]
- CL signature variant [CHP12]
- Waters' signatures with shared params [Wato5, BFG13]
- Pointcheval-Sanders signatures [PS16]

Application to SSE NIZK

Non-Interactive Proof Systems

NP-language *L* w.r.t. relation *R*

$$\cdot x \in L \iff \exists w : (x, w) \in R$$

Non-interactive proof system

Non-Interactive Proof Systems - Properties

Completeness

• Honestly computed proof for $(x, w) \in R$ will always verify

Soundness

• Infeasible to produce valid proof for $x \notin L$

Extractability

- · Stronger variant of soundness
- Extract witness from valid proof (using trapdoor)

Non-Interactive Proof Systems - Properties contd.

Witness Indistinguishability (WI)

• Distinguish proofs for same x w.r.t. different w, w'

Zero-Knowledge (ZK)

- Stronger variant of witness indistinguishability
- · Simulate proofs without knowing w (using trapdoor)

Simulation Sound Extractability (SSE)

Very strong notion

- · Combination of zero-knowledge and extractability
- Adversary sees simulated proofs for arbitrary x
- Still infeasible to forge proof for new $x \notin L$
- \Rightarrow Can extract witness for any proof with "new" x

Requires non-malleability

weak SSE: non-malleability w.r.t. proven statement

SSE: non-malleability w.r.t. proof and proven statement

Construction Idea - weak SSE

Extend proof with adaptable signature

- Sign proof under a random key pk'
- Include signature on proven statement under pk'

Extend Language L to L'

· Include pk in CRS

$$x \in L \iff \exists w : (x, w) \in R$$

 $(x, pk, pk') \in L' \iff \exists w : (x, w) \in R \lor \exists \Delta : pk = pk' \cdot \mu(\Delta)$

⇒ Shift amount allows to extract valid signature under **pk**

Can construct an SSE NIZK proof system for L

- From extractable WI proof system for L'
- + Adaptable signature scheme

Construction Idea - weak SSE - Security

Observations

· Either need witness for 1st or 2nd literal in OR clause

$$(x, w) \in R \vee \exists \Delta : pk = pk' \cdot \mu(\Delta)$$

- Prover has to use w s.t. $(x, w) \in R$
- ⇒ Otherwise needs signature under pk

Zero-Knowledge

- Set up CRS so that **sk** for **pk** is known
- Create signature σ on proof under **sk**
- Shift σ to σ' under random key pk'
- Create proof using "shift amount" △
- ⇒ Cannot be detected under WI

Construction Idea - weak SSE - Security contd.

Weak Simulation Sound Extractability

- · Simulate as before
 - Use pk from EUF-CMA challenger
 - · Obtain signatures via Sign oracle
- · Use extractor from underlying proof system
- EUF-CMA implies extraction of w s.t. $(x, w) \in R$

Simulation Sound Extractability

· Additionally use strong one-time DSS

Instantiation Example

Recall Waters' variant in SXDH setting

[BFG13]

- Public parameters $U = (u_0, ..., u_n) \stackrel{R}{\leftarrow} \mathbb{G}_1^n$
- Waters' hash $H(m) := u_0 \prod_{i \in [n]} u_i^{m_i}$ where $m \in \{0,1\}^m$
- Public key: $\mathsf{sk} \leftarrow g^{\mathsf{x}} \in \mathbb{G}_{\mathsf{1}}$, $\mathsf{pk} \leftarrow \hat{g}^{\mathsf{x}} \in \mathbb{G}_{\mathsf{2}}$, with $\mathsf{x} \overset{\mathtt{R}}{\leftarrow} \mathbb{Z}_p$
- Signature: $\sigma \leftarrow (g^x \cdot H(m)^r, g^r, \hat{g}^r)$, with $r \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_p$
- Verification via pairing

Perfect adaptability

- Signature $\sigma = (\sigma_1, \sigma_2, \sigma_3)$
- · Shift amount $\Delta = (\Delta_1, \Delta_2) \in \mathbb{G}_1 \times \mathbb{G}_2$
- With $e(\triangle_1, \hat{g}) = e(g, \triangle_2)$
- Shift $(\mathbf{pk'}, \sigma') \leftarrow (\hat{g}^{x} \cdot \Delta_{2}, (\sigma_{1} \cdot \Delta_{1} \cdot H(m)^{r'}, \sigma_{2} \cdot g^{r'}, \sigma_{3} \cdot \hat{g}^{r'}))$

Combination with Groth-Sahai proofs

• Only requires to prove knowledge of single element in \mathbb{G}_1 !

Conclusions

Generic compilers for various signature variants

- + Applicable to large classes of schemes
- + Strong security guarantees from very mild requirements
- + Extremely simple
- + Favorable regarding efficiency w.r.t. previous schemes
- + Deeper understanding of construction paradigms

Directly yields novel instantiations

- + Comparing favorably to existing work
- + Standard model & assumptions: Waters' sigs + GS proofs

Conclusions

Results in [DS16]

Thank you.

Preprint available as IACR ePrint Archive Report 2016/792

☑ david.derler@iaik.tugraz.at 🤟 @dderler

