Homomorphic Proxy Re-Authenticators

and Applications to Verifiable Multi-User Data Aggregation

David Derler, Sebastian Ramacher, and Daniel Slamanig April 2017—FC 2017, Sliema, Malta

Overview

Overview

1

Goals

End-to-end authenticity

- Protect data from unauthorized manipulation
- Preserve source authenticity

Conceal original data

 \cdot Receiver only learns result of computation and f

Conceal computation result

· Aggregator does neither learn inputs nor result

Setting

- Independent keys for all parties
- Non-interactive re-key generation
- → No centralized setup!

Related Work

Proxy re-cryptography (semi-trusted proxy)

- Re-encryption: $\triangle \rightarrow \triangle$ using $\triangleleft \rightarrow \triangleleft \triangleleft$
- → Pailler encryption with split key
- ightarrow Fully homomorphic encryption based [MLO16]
 - Re-signing: \longrightarrow \longrightarrow using \nwarrow \longrightarrow [BBS98, ID03, AH05, LV08]

Homomorphic authenticators

- Multi-key homomorphic authenticators [FMNP16,DS16,LTWC16]

[BBS98, ID03, AFGH06]

[ARHR13]

Related Work contd.

Aggregator oblivious encryption (AOE)

[RN10, SCR+11]

- · Aggregation of data from multiple sources
- · Semi-trusted aggregator only learns final result
- AOE with homomorphic tags \rightarrow verifiability

[LEÖM15]

- Not possible to hide outputs from aggregator
- Trusted distribution of keys
- ... also other lines of work on data aggregation

Bottom line

· Nothing covers all our requirements

Contribution

Homomorphic Proxy Re-Authenticators (HPRA)

- Multi-user data aggregation
- Under independent keys for sources
- · Verifiability of evaluations of general functions
- Privacy w.r.t. the aggregator

Homomorphic Proxy Re-Encryption (HPRE)

- · Formal definitions
- Construction for linear functions

Construction of HPRA

- For the class of linear functions
- Suitable linearly homomorphic MAC
- Privacy via HPRE for linear functions

Homomorphic Proxy Re-Authenticators

Algorithms

- · Parameter/key generation: Gen, SGen, VGen
- · Signature generation/verification: Sign, Verify
- · Re-key generation: SRGen, VRGen
- · Aggregation/verification algorithms: Agg, AVerify

Remarks

- ightarrow Verify is optional
- → Re-key generation non-interactive

Unforgeability

Non-collusion assumption

- Of sources and aggregator
- · Impossible to circumvent
- → Colluding parties could authenticate everything

Signer unforgeability

- · Intractable to produce forgery
- For coalition of dishonest sources
- As long as aggregator remains honest

Aggregator unforgeability

- · Natural counterpart of signer unforgeability
- · Dishonest aggregator, honest signers

Privacy

Input privacy

- \cdot Evaluation of f on authenticated vectors hides inputs
- \rightarrow Same information as when only seeing f and y

Output privacy

- · Aggregator neither learns inputs
- \cdot Nor result of evaluation of f on inputs

HPRA for Linear Functions - Achieving Input Privacy

Basic idea

- · Combine linearly homomorphic signature scheme
- · With compatible linearly homomorphic MAC
- + Mechanism to "switch" keys

Building blocks

- Adaption of network coding signatures (tag based) [BFKW09]
- Convert [BFKWo9] to MAC
- + Prove MAC unforgeable under adversarially chosen tags
- + Prove security of overall construction

Construction Sketch

Setup

- · Bilinear group setting $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$, prime order p
- Public parameters: $(g_i)_{i \in [\ell]} \in \mathbb{G}^{\ell}$
- Source: $\mathsf{sk} \leftarrow \beta \in \mathbb{Z}_p$, $\mathsf{pk} \leftarrow (g^\beta, g^{1/\beta})$
- Receiver: $\mathbf{sk} \leftarrow \alpha \in \mathbb{Z}_p$
- Re-signing key: $g^{\alpha/\beta}$

Signature under source key (lives in \mathbb{G})

$$\sigma \leftarrow \left(\mathsf{H}(\tau||g^{\boldsymbol{\beta}}) \cdot \prod_{i \in [\ell]} g_i^{m_i} \right)^{\boldsymbol{\beta}}$$

Convert to MAC under receiver's key (lives in \mathbb{G}_T)

$$\mu \leftarrow e(\sigma, g^{\alpha/\beta}) = e\Big(\Big(H(\tau||g^{\beta}) \cdot \prod_{i \in [\ell]} g_i^{m_i}\Big), g\Big)^{\alpha}$$

Construction Sketch - Security

Unforgeability (ROM)

- · Signer unforgeability: UF of MAC (bilinear DDH)
- · Aggregator unforgeability: bilinear CDH variant

Input privacy

- For all \vec{m}_1 , \vec{m}_2 with $f(\vec{m}_1) = f(\vec{m}_2)$
- Signatures/MACs identically distributed

Achieving Output Privacy

Basic idea

- · Use input private scheme
- + Encrypt vectors with HPRE
- → Evaluate function on signatures and ciphertexts

Additional Obstacles

- · Signatures still publicly verifiable!
- MAC for sources no option (interactive key generation)
- \rightarrow Blind signature with blinding value g^r
 - + Use HPRE to encrypt blinding value

Homomorphic Proxy Re-Encryption (HPRE)

Homomorphic Proxy Re-Encryption (HPRE)

Conventional PRE scheme

- + Additional algorithm **Eval**
- Evaluate functions f on ciphertexts
- \cdot Decryption yields evaluation of f on the plaintexts

Nice feature

- Collect data from multiple sources
- Re-encrypt to receiver
- Evaluate function on re-encrypted ciphertexts

Extensions of security model

- \cdot Eval is public \rightarrow no changes up to correctness extension
- + New multi-target IND-CPA ightarrow tailored to our HPRE usage

HPRE - Instantiation

Observation

- · Many PRE schemes ElGamal based
- · Exponential ElGamal is linearly homomorphic

$$(g^{r_1}, g^{m_1}g^{xr_1}) \cdot (g^{r_2}, g^{m_2}g^{xr_2}) = (g^{r_1+r_2}, g^{m_1+m_2}g^{x(r_1+r_2)})$$

 \rightarrow Apply this to [AFGHo6] PRE scheme

Extend to vectors

- · Straight forward extension
- + Reduce ciphertext size via randomness reuse

[BBKS07]

HPRE - Instantiation contd.

Decryption

- Yields $m' = g^m$, need to compute $m = \log_q m'$
- · Numerical values in order of millions to billions
- ✓ Entirely practical

Putting the Pieces Together - Output Privacy

Signatures still publicly verifiable

- Possible to verify guesses
- \rightarrow Blind signature with g^r
 - · r uniformly random in \mathbb{Z}_p
 - Obtaining r not efficiently possible
- \checkmark However, obtaining g^r (resp. $e(g^r,g)$) sufficient

Conclusions

New notion of HPRA

- ✓ Multi-source data aggregation under independent keys
- ✓ End-to-end authenticity and verifiability of computations
- √ Support for general functions

Two modular HPRA construction

- ✓ Construction for linear functions
- √ Novel linearly homomorphic MAC
- ✓ Strong privacy via the new notion of HPRE

Open Questions

- Instantiation for functions beyond linear ones
- Signature instead of MAC for receivers
- · Construction in standard model

Thank you.

Full version available as IACR ePrint Archive Report 2017/086

☑ david.derler@iaik.tugraz.at 🤟 @dderler

