

Revisiting Cryptographic Accumulators, Additional Properties and Relations to other Primitives

David Derler, Christian Hanser, and Daniel Slamanig, IAIK, Graz University of Technology

April 21, 2015

Outline

- 1. Introduction
- 2. A Unified Formal Model
- 3. Accumulators from Zero-Knowledge Sets
- 4. Black-Box Construction of Commitments

Outline

1. Introduction

2. A Unified Formal Model

3. Accumulators from Zero-Knowledge Sets

4. Black-Box Construction of Commitments

Static Accumulators

Finite set

Accumulator

Static Accumulators

Finite set

Accumulator

Witnesses wit_x certifying membership of x in $acc_{\mathcal{X}}$

- Efficiently computable $\forall x \in \mathcal{X}$
- Intractable to compute $\forall x \notin \mathcal{X}$

- RSA modulus N
- Accumulator for $\mathcal{X} = \{x_1, \ldots, x_n\}$
 - $\operatorname{acc}_{\mathcal{X}} \leftarrow g^{x_1 \cdots x_{i-1} \cdot x_i \cdot x_{i+1} \cdots \cdot x_n} \mod N$

- RSA modulus N
- Accumulator for $\mathcal{X} = \{x_1, \ldots, x_n\}$

• $\operatorname{acc}_{\mathcal{X}} \leftarrow g^{x_1 \cdots x_{i-1} \cdot x_i \cdot x_{i+1} \cdots x_n} \mod N$

- Witness for x_i:
 - wit_{x_i} $\leftarrow g^{x_1 \cdot \dots \cdot x_{i-1} \cdot x_{i+1} \cdot \dots \cdot x_n} \mod N$

- RSA modulus N
- Accumulator for $\mathcal{X} = \{x_1, \ldots, x_n\}$

• $\operatorname{acc}_{\mathcal{X}} \leftarrow g^{x_1 \cdots x_{i-1} \cdot x_i \cdot x_{i+1} \cdots x_n} \mod N$

- Witness for x_i:
 - wit_{xi} $\leftarrow g^{x_1 \cdot \dots \cdot x_{i-1} \cdot x_{i+1} \cdot \dots \cdot x_n} \mod N$
- Verify witness:
 - Check whether $(wit_{\mathbf{X}_i})^{\mathbf{X}_i} \equiv \operatorname{acc}_{\mathcal{X}} \mod N$.

- RSA modulus N
- Accumulator for $\mathcal{X} = \{x_1, \ldots, x_n\}$

• $\operatorname{acc}_{\mathcal{X}} \leftarrow g^{x_1 \cdots x_{i-1} \cdot x_i \cdot x_{i+1} \cdots x_n} \mod N$

Witness for x_i:

• wit_{xi} $\leftarrow g^{x_1 \cdot \dots \cdot x_{i-1} \cdot x_{i+1} \cdot \dots \cdot x_n} \mod N$

- Verify witness:
 - Check whether $(wit_{\mathbf{x}_i})^{\mathbf{x}_i} \equiv \operatorname{acc}_{\mathcal{X}} \mod N$.
- Witness for $y \notin \mathcal{X}$
 - Would imply breaking strong RSA
 - ... unless factorization of *N* is known.

Dynamic and Universal Features

Dynamically add/delete elements

- ...to/from accumulator acc_X
- Update witnesses accordingly
- All updates independent of $|\mathcal{X}|$

Dynamic and Universal Features

Dynamically add/delete elements

- ...to/from accumulator acc_X
- Update witnesses accordingly
- All updates independent of $|\mathcal{X}|$

Universal features

- Demonstrate non-membership
- Non-membership witness wit_x
 - Efficiently computable $\forall x \notin acc_{\mathcal{X}}$
 - Intractable to compute $\forall x \in acc_{\mathcal{X}}$

6

Motivation

Accumulators widely used in various applications

- e.g., credential revocation, malleable signatures, ...
- Previous models tailored to specific constructions
 - Different features
 - Private/public updatability

Motivation

Accumulators widely used in various applications

- e.g., credential revocation, malleable signatures, ...
- Previous models tailored to specific constructions
 - Different features
 - Private/public updatability

Thus, accumulators not usable as black-boxes

- Limited exchangeability when used in other constructions
- Relations to other primitives hard to study

- Unified formal model for
 - Static/dynamic/universal accumulators
 - Introduces randomized and bounded accumulators
 - Introduces indistinguishability
 - Includes undeniability

- Unified formal model for
 - Static/dynamic/universal accumulators
 - Introduces randomized and bounded accumulators
 - Introduces indistinguishability
 - Includes undeniability
- First constructions fulfilling new notions
 - First indistinguishable, dynamic acc
 - First undeniable, indistinguishable, universal acc

- Unified formal model for
 - Static/dynamic/universal accumulators
 - Introduces randomized and bounded accumulators
 - Introduces indistinguishability
 - Includes undeniability
- First constructions fulfilling new notions
 - First indistinguishable, dynamic acc
 - First undeniable, indistinguishable, universal acc
- Black-box relations to commitments and ZK-sets

- Unified formal model for
 - Static/dynamic/universal accumulators
 - Introduces randomized and bounded accumulators
 - Introduces indistinguishability
 - Includes undeniability
- First constructions fulfilling new notions
 - First indistinguishable, dynamic acc
 - First undeniable, indistinguishable, universal acc
- Black-box relations to commitments and ZK-sets
- Exhaustive classification of existing schemes (see Paper)

Outline

1. Introduction

2. A Unified Formal Model

3. Accumulators from Zero-Knowledge Sets

4. Black-Box Construction of Commitments

Algorithms

Static Accumulators - Algorithms

Gen Eval WitCreate Verify

Algorithms

Static Accumulators - Algorithms

Gen
Eval
WitCreate
Verify

We call accumulators

- *t*-bounded, if an upper bound for the set size exists
- randomized, if Eval is probabilistic
 - Eval_r to make used randomness explicit

Algorithms

Static Accumulators - Algorithms

Gen Eval WitCreate Verify

We call accumulators

- *t*-bounded, if an upper bound for the set size exists
- randomized, if Eval is probabilistic
 - Eval_r to make used randomness explicit

Dynamic Accumulators additionally provide

Add Delete WitUpdate

Algorithms - Universal Accumulators

Static or dynamic accumulator, but in addition

• WitCreate and Verify take additional parameter type

Algorithms - Universal Accumulators

Static or dynamic accumulator, but in addition

- *WitCreate* and *Verify* take additional parameter *type*
 - Membership (*type* = 0) vs. non-membership mode (*type* = 1)

Algorithms - Universal Accumulators

Static or dynamic accumulator, but in addition

- *WitCreate* and *Verify* take additional parameter *type*
 - Membership (*type* = 0) vs. non-membership mode (*type* = 1)
- For dynamic accumulator schemes
 - The same additionally applies to WitUpdate

Security

- Correctness
- Collision freeness
- Undeniability
- Indistinguishability

Security - Collision Freeness

Experiment **Exp**^{*cf*}_{κ}(·):

Security - Collision Freeness

Experiment **Exp**^{*cf*}_{κ}(·):

• \mathcal{A} wins if

- wit^{*}_x is membership witness for non-member, or
- <u>wit</u>^{*}_x is non-membership witness for member

Security - Undeniability

Defined for universal accumulators

Experiment $\mathbf{Exp}_{\kappa}^{ud}(\cdot)$:

Security - Undeniability

Defined for universal accumulators

Experiment **Exp**^{*ud*}_{κ}(·):

• \mathcal{A} wins if verification succeeds for both wit^{*}_x and wit^{*}_x

Undeniability $\stackrel{\scriptscriptstyle\not=}{\Rightarrow}$ Collision Freeness

We show that

• Efficient \mathcal{A}^{cf} can be turned into efficient \mathcal{A}^{ud}

Undeniability $\stackrel{\not\approx}{\Rightarrow}$ Collision Freeness

We show that

• Efficient \mathcal{A}^{cf} can be turned into efficient \mathcal{A}^{ud}

Other direction does not hold [BLL02]

So far, no meaningful formalization

- Existing formalization allows to prove indistinguishability
- for trivially distinguishable accumulators

So far, no meaningful formalization

- Existing formalization allows to prove indistinguishability
- for trivially distinguishable accumulators

We provide formalization

not suffering from shortcomings above

Experiment $\mathbf{Exp}_{\kappa}^{ind}(\cdot)$:

Experiment **Exp**^{*ind*}(·):

A wins if guess correct

David Derler, IAIK, Graz University of Technology April 21, 2015

Ad-hoc solution in literature

Insert a (secret) random value z into acc.

Ad-hoc solution in literature

Insert a (secret) random value z into acc.

However, weakens collision freeness

Witness for z efficiently computable by definition

Ad-hoc solution in literature

Insert a (secret) random value *z* into acc.

However, weakens collision freeness

Witness for z efficiently computable by definition

Thus, we distinguish

- Indistinguishability
- Collision freeness weakening (cfw)-indistinguishability

Ad-hoc solution in literature

Insert a (secret) random value *z* into acc.

However, weakens collision freeness

- Witness for z efficiently computable by definition
- Thus, we distinguish
 - Indistinguishability
 - Collision freeness weakening (cfw)-indistinguishability

We modify [Ngu05] to provide indistinguishability

First indistinguishable t-bounded dynamic accumulator

Outline

1. Introduction

2. A Unified Formal Model

3. Accumulators from Zero-Knowledge Sets

4. Black-Box Construction of Commitments

Zero-Knowledge Sets

Commit to a set ${\mathcal X}$

- Prove predicates of the form
 - $X \in \mathcal{X}$
 - $x \notin \mathcal{X}$
 - \hfill While not revealing anything else about ${\cal X}$

Zero-Knowledge Sets

Commit to a set ${\mathcal X}$

- Prove predicates of the form
 - $X \in \mathcal{X}$
 - $x \notin \mathcal{X}$
 - \hfill While not revealing anything else about ${\cal X}$

Observation

Similar to undeniable indistinguishable accumulators

Zero-Knowledge Sets

Commit to a set ${\mathcal X}$

- Prove predicates of the form
 - $x \in \mathcal{X}$
 - $x \notin \mathcal{X}$
 - \hfill While not revealing anything else about ${\cal X}$

Observation

- Similar to undeniable indistinguishable accumulators
- Algorithms compatible
- Security notions similar

Security notions

- Perfect completeness = correctness
- Soundness \equiv undeniability

Security notions

- Perfect completeness = correctness
- Soundness ≡ undeniability
- Zero-knowledge
 - Simulation-based notion
 - \exists simulator S, negl. ϵ , s.t. \forall PPT distinguishers: Pr [distinguish sim/real] $\leq \epsilon(\kappa)$

Security notions

- Perfect completeness = correctness
- Soundness ≡ undeniability
- Zero-knowledge
 - Simulation-based notion
 - \exists simulator S, negl. ϵ , s.t. \forall PPT distinguishers: Pr [distinguish sim/real] $\leq \epsilon(\kappa)$
 - We show that "zero-knowledge \implies indistinguishability"
 - Other direction unclear, sim-based notion seems stronger

Security notions

- Perfect completeness = correctness
- Soundness ≡ undeniability
- Zero-knowledge
 - Simulation-based notion
 - \exists simulator S, negl. ϵ , s.t. \forall PPT distinguishers: Pr [distinguish sim/real] $\leq \epsilon(\kappa)$
 - We show that "zero-knowledge \implies indistinguishability"
 - Other direction unclear, sim-based notion seems stronger

First undeniable, unbounded, indistinguishable acc

■ Nearly ZK sets → *t*-bounded

Outline

1. Introduction

- 2. A Unified Formal Model
- 3. Accumulators from Zero-Knowledge Sets
- 4. Black-Box Construction of Commitments

- Compute commitment C to message m
- Later: provide opening $\ensuremath{\mathcal{O}}$ demonstrating that
 - C is commitment to m

- Compute commitment C to message m
- Later: provide opening ${\mathcal O}$ demonstrating that
 - C is commitment to m
- Security (informal):
 - Correctness: straight forward

- Compute commitment C to message m
- Later: provide opening ${\mathcal O}$ demonstrating that
 - C is commitment to m
- Security (informal):
 - Correctness: straight forward
 - Binding: Intractable to find C, O, O' such that C opens to two different messages $m \neq m'$

- Compute commitment C to message m
- Later: provide opening ${\mathcal O}$ demonstrating that
 - C is commitment to m
- Security (informal):
 - Correctness: straight forward
 - Binding: Intractable to find C, O, O' such that C opens to two different messages $m \neq m'$
 - Hiding: For C to either m₀ or m₁. Intractable to decide whether C opens to m₀ or m₁

Use 1-bounded indistinguishable accumulators

- $\mathcal{C} \leftarrow \operatorname{acc}_{\{m\}}$
- $\mathcal{O} \leftarrow (m, r, wit_m, aux)$ such that
 - $\operatorname{acc}_{\{m\}} = Eval_r((\emptyset, pk_{acc}), \{m\})$
 - Verify(pk_{acc}, acc_{m}, wit_m, m) = true

Use 1-bounded indistinguishable accumulators

- $\mathcal{C} \leftarrow \operatorname{acc}_{\{m\}}$
- $\mathcal{O} \leftarrow (m, r, wit_m, aux)$ such that
 - $\operatorname{acc}_{\{m\}} = Eval_r((\emptyset, \mathsf{pk}_{\operatorname{acc}}), \{m\})$
 - $Verify(pk_{acc}, acc_{\{m\}}, wit_m, m) = true$
- Collision-freeness ⇒ Binding

Use 1-bounded indistinguishable accumulators

- $\mathcal{C} \leftarrow \operatorname{acc}_{\{m\}}$
- $\mathcal{O} \leftarrow (m, r, wit_m, aux)$ such that
 - $\operatorname{acc}_{\{m\}} = Eval_r((\emptyset, \mathsf{pk}_{\mathsf{acc}}), \{m\})$
 - $Verify(pk_{acc}, acc_{\{m\}}, wit_m, m) = true$
- Collision-freeness ⇒ Binding
- Indistinguishability ⇒ Hiding

Use 1-bounded indistinguishable accumulators

- $\mathcal{C} \leftarrow \operatorname{acc}_{\{m\}}$
- $\mathcal{O} \leftarrow (m, r, wit_m, aux)$ such that

•
$$\operatorname{acc}_{\{m\}} = Eval_r((\emptyset, \mathsf{pk}_{\mathsf{acc}}), \{m\})$$

- $Verify(pk_{acc}, acc_{\{m\}}, wit_m, m) = true$
- Collision-freeness \Rightarrow Binding
- Indistinguishability ⇒ Hiding

Observe: cfw-indistinguishability not useful

Straight forward extension to set-commitments

- Use t-bounded accumulators
- Opening w.r.t. entire set

Straight forward extension to set-commitments

- Use t-bounded accumulators
- Opening w.r.t. entire set

Trapdoor commitments

Use skacc as trapdoor

Conclusion

Unified model for accumulators

Covering all features existing to date

Conclusion

Unified model for accumulators

• Covering all features existing to date Introduce indistinguishability notion

Provide first indistinguishable dynamic scheme

Conclusion

Unified model for accumulators

Covering all features existing to date
Introduce indistinguishability notion

Provide first indistinguishable dynamic scheme

Show relations to other primitives

- Commitments
- Zero-knowledge sets
 - Yields first undeniable, unbounded, indistinguishable, universal accumulator
- Inspiration for new constructions

Thank you.

david.derler@iaik.tugraz.at

Extended version: http://eprint.iacr.org/2015/087

References I

- [BLL02] Ahto Buldas, Peeter Laud, and Helger Lipmaa. Eliminating counterevidence with applications to accountable certificate management. *Journal of Computer Security*, 10(3):273–296, 2002.
- [Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications. In Topics in Cryptology - CT-RSA 2005, The Cryptographers' Track at the RSA Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings, pages 275–292, 2005.