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Privacy and Security Maintaining Services in the Cloud
Overview of Functional and Malleable Signature Schemes

Executive Summary

Cloud computing is about outsourcing of storage to and processing of data at third party infras-
tructure. Besides many obvious benefits, such a paradigm clearly comes with many security and
privacy related problems, as cloud providers cannot be considered fully trustworthy or immune
to attacks or faults. While problems related to the confidentiality of data in this setting are
well recognised and already addressed today by commercial products, there are still many open
problems when it comes to the integrity and authenticity of processed data (and outsourced
processes in general) as well as the verifiability of data and the processing tasks. The main
question in this context is how one can ensure that the cloud works as required and how we can
hold the cloud accountable if this is not the case, e.g., if faults happen or if there occurs some
malicious deviation from a specified process.

Within the Prismacloud project we are (among others) interested in designing tools that
counter problems related to integrity, authenticity and verifiability in the context of cloud
computing. Digital signature schemes are a well known tool for guaranteeing the aforementioned
properties in practice. However, their practical application is mainly tailored towards the use
with documents so far. Additionally, when considering the outsourcing of processes and their
integrity, authenticity and verifiability features, conventional digital signatures are not sufficient.
Firstly, the document-oriented view may be too coarse-grained as well as too inexpressive and
more importantly the dynamicity required when processing data imposes requirements that are
often diametral to conventional digital signatures. In particular, any manipulation of signed
data destroys corresponding signatures and thus prevents (controlled) updates of information.

There are very promising but not yet well known variants of digital signature schemes that
can help to overcome the aforementioned issues. In particular, so called functional and mal-
leable signature schemes are the most promising ones candidates. Thereby, functional signature
schemes allow to delegate signature generation for specific types of messages to other parties.
Malleable signatures allow to modify already signed messages in a controlled way and without
signer-interaction (access to the secret signing key), while preserving the validity of the original
signature.

The main purpose of this deliverable (D4.4) is to present the state-of-the-art of the two afore-
mentioned classes of signature schemes.
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1 Introduction

Outsourcing of storage to and processing of data at third party cloud infrastructure—or more
generally, outsourcing services to third parties—introduces various challenging security and trust
issues, which need to be solved in order to gain user’s trust. Besides the evident confidentiality
issues associated with outsourced data, other very important topics are integrity, authenticity
and verifiability. Basically, here the question is how we can ensure that the cloud works as it is
intended or claimed to do and how can we hold the cloud accountable if not.

One fundamental cryptographic building block used to provide a means for integrity protection
as well as authenticity are digital signatures. A shift from the protection of integrity and authen-
ticity of documents, as traditionally considered by digital signatures, to dynamic processes in a
cloud environment introduces additional challenges. Consequently, one requires more versatile
and flexible tools to cope with the associated requirements.

Over the years various powerful variants of digital signature schemes have been proposed.
Among these proposals are so called malleable as well as functional signature schemes. Thereby,
malleable signatures allow some controlled modifications of signed messages that do not require
the signer’s secret key and do not destroy the validity of the digital signature. Thus, such
schemes can be used to compute on signed (authenticated) data as well as to add accountability
to business processes (workflows). Functional signatures allow delegation of signature generation
to other parties for a class of messages meeting certain conditions (specified by the delegation).
Thus, such schemes can be used, among others, to certify computations and processes.

1.1 Motivation

To date, there is no comprehensive study of malleable and functional signature schemes avail-
able1. As these two classes of digital signature schemes are the most promising for the appli-
cations within the Prismacloud project, our goal for this report is to provide an extensive
survey of the state-of-the-art within these fields. Moreover, such a complete and structured
overview of all the different already available schemes, their potential as well as limitations will
help to unleash the potential of such schemes for the application of integrity, authenticity and
verifiability as envisioned within Prismacloud.

1.2 Roadmap

Before we begin, we provide a brief overview of the contents of this report. Foremost, in
Section 1.3 we provide some preliminary and notational material to make the document self
contained. Nevertheless, we want to emphasize that we do not provide an exhaustive introduc-
tion to cryptographic primitives such as digital signatures but assume some general familiarity
with concepts of modern cryptography.

1The first one that covers the part on homomorphic signatures [TDB15] has recently been made available
online. It is a result from work within the Prismacloud project and part of this deliverable (cf. Section 4).
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The subsequent sections of this report are structured as follows:

General Frameworks: In Section 2, we review general/generic frameworks for functional and
malleable/homomorphic signature schemes. We note that some of these frameworks have
been proposed independently and cover very similar concepts. Existing generic instanti-
ations for some of these frameworks can only be considered as feasibility results, whereas
there are (very) efficient instantiations that fall within some of the frameworks2. Such
general frameworks are mainly useful to investigate the power as well as limitations of
schemes and to investigate connections to other cryptographic primitives (in a black-box
way). As we are not going to study such aspects in this report, these frameworks will not
appear often throughout the remaining document and do not play any central role in the
remaining sections.

Functional Signatures: In Section 3, we review the state-of-the-art in functional signature
schemes. Under this class of signature schemes we consider schemes that support func-
tional signing keys, i.e., delegating signing keys that somehow include a functionality which
limits its use in which or when/how messages can be signed. Thereby, we cover proxy
signature schemes, policy-based signature schemes, attribute-based signature schemes as
well as related concepts such as group signatures and traceable signatures.

Malleable Signatures for Arithmetics: In Section 4, we review the state-of-the-art in sig-
nature schemes that allow to (arithmetically) compute on signed messages whereas mes-
sages are considered as (numeric) data. In particular, we investigate homomorphic sig-
natures schemes that allow to evaluate certain classes of admissible functions (e.g., linear
functions, polynomial functions of higher degree) on signed data as well homomorphic
aggregate signature schemes.

Malleable Signatures for Editing: In Section 5, we review the state-of-the-art in signature
schemes that allow editing signed messages in certain ways without invalidating the signa-
ture. Thereby, we have chosen the term editing, as these schemes are typically document
oriented (instead of data oriented) and their purpose is controlled manipulation of signed
documents. This class covers various types of redactable and sanitizable signature schemes
as well as append-only signature schemes. We also briefly discuss related concepts such
as transitive signatures and graph-based algebraic signatures.

We want to emphasize that the above structure and in particular the classification of the ap-
proaches is somewhat arbitrary, not very strict and there are definitely overlaps. We sketch
the big picture in Figure 1, where the question mark indicates that there may be other classes
which we do not cover here (we stress that the area in the figure does not correlate with the
significance of the concepts or numbers of existing schemes).

Most importantly, we have decided to spilt malleable signatures into two separate categories
of malleable signatures for arithmetics and malleable signatures for editing. We do not see
any problems with this, as there does not seem to be a very clean separation of the studied

2We stress that we provide an overview of all the existing general frameworks without any judging or sugges-
tions which framework may be superior (in case they cover identical or similar functionality).
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Functional Signatures

MS Arithmetics

MS Editing
?

Figure 1: Classification of types of signatures.

approaches (apart from general frameworks) and we believe that our classification is intuitive
and more closely reflects the current applications of the studied signature schemes. We also
note that in the literature one sometimes encounters the term algebraic signatures instead of
homomorphic/malleable signatures, but we will not use it throughout this report. Moreover,
we emphasize that we use the term functional signatures in a very broad sense and our class of
functional signature schemes may cover more schemes than the framework of functional digital
signatures discussed in Section 2.13

Finally, in Section 6 we provide an outlook on future research work within the Prismacloud
project and general open issues for future work within the various categories of schemes.

1.3 Preliminaries

In the following we introduce some notational conventions that are used throughout the report,
some (basic) cryptographic assumptions as well as some basic cryptographic primitives.

1.3.1 Notation

Let x←R X denote the operation that picks an element x uniformly at random from a set X. If
we write b←R B(a1, . . . , a`) where B is an algorithm run on input a1, . . . , a`, then we emphasize
that B is a probabilistic algorithm. Sometimes we write B(a1, . . . , a`; r) to make the randomness
r used by a probabilistic algorithm B explicit. A function ε : N → R+ is called negligible if for
all c > 0 there is a k0 such that ε(k) < 1/kc for all k > k0. In the remainder of this report,
we use ε to denote such a negligible function. We will denote a cyclic (additive) group with G
and we use G∗ to denote G \ {0G}. Unless stated differently, we will assume that a group G has
prime order p.

3The framework has a very generic name, but not all signatures that fall under functional signatures seem to
fit to this framework (for instance, attribute-based signatures do not nicely fit to this framework).
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1.3.2 Cryptographic Assumptions

Definition 1 (Bilinear Map). Let G1 = 〈g〉, G2 = 〈ĝ〉 and GT be cyclic groups of prime order
p, where G1 and G2 are additive and GT is multiplicative. We call e : G1×G2 → GT a bilinear
map or pairing if it is efficiently computable and the following conditions hold:

Bilinearity: e(ga, ĝb) = e(g, ĝ)ab = e(gb, ĝa) ∀ a, b ∈ Zp

Non-degeneracy: e(g, ĝ) 6= 1GT , i.e., e(g, ĝ) generates GT .

If G1 = G2, then e is symmetric (Type-1) and asymmetric (Type-2 or 3) otherwise. For Type-
2 pairings there is an efficiently computable isomorphism Ψ: G2 → G1; for Type-3 pairings
no such isomorphism is known. Type-3 pairings are currently the optimal choice in terms of
efficiency and security trade-off [CM11]. We emphasize that we abuse the multiplicative notion
of the groups G1 and G2 (as often done in the literature).

Now, we state the computational and the decisional version of the Diffie-Hellman problem,
where we use the shorthand Gκ = (G, p, g) with p being a prime of size κ bits.

Definition 2 (CDH). The computational Diffie-Hellman (CDH) assumption states that for all
PPT adversaries A there exists a negligible function ε(·) such that

Pr
[
x, y←R Zp, A(Gκ, gx, gy) = gxy

]
≤ ε(κ).

Definition 3 (DDH). The decisional Diffie-Hellman (DDH) assumption states that for all PPT
adversaries A there exists a negligible function ε(·) such that

Pr
[
x, y, z←R Zp, b←R {0, 1}, b∗ ← A(Gκ, gx, gy, g(1−b)·z+b·xy) : b = b∗

]
≤ 1

2
+ ε(κ).

As in certain bilinear groups the decisional Diffie-Hellman problem is easy to solve, e.g,. in
Type-1 groups, Boneh et al. [BBS04] introduced the decisional linear assumption which is
assumed to hold even in such DDH-easy groups:

Definition 4 (DLIN). The decisional linear (DLIN) assumption states that for all PPT adver-
saries A there exists a negligible function ε(·) such that

|Pr[x, y, z←R Zp, b←R {0, 1}, b∗ ← A(Gκ, ux, vy, h(1−b)·z+b·(x+y)) : b = b∗] ≤ 1

2
+ ε(κ),

where u, v, h are independent generators of G.

The previous problem implies the following simultaneous double pairing problem [CLY09].
Therefore, let Gκ = (e,G,GT , p, g) be a symmetric bilinear group setting with p being a prime
of κ bits.

Definition 5 (SDP). The simultaneous double pairing (SDP) assumption states that for all
PPT adversaries A there exists a negligible function ε(·) such that

Pr

[
gz, hz, gr, hu←R G∗, (z, r, u)← A(Gκ, gz, hz, gr, hu) :

(z, r, u) ∈ G∗ ∧ e(hz, z) · e(hu, u) = 1Gt = e(gz, z) · e(gr, r)

]
≤ ε(κ).
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Below we present a variant of the flexible Diffie-Hellman (FlexDH) assumption [KP06], which
is slightly stronger than the standard Diffie-Hellman assumption, and is used in [ALP13].

Definition 6 (FlexDH). The flexible Diffie-Hellman (FlexDH) assumption states that for all
PPT adversaries A there exists a negligible function ε(·) such that:

Pr
[
a, b←R Zp, (u, v, w)← A(Gκ, ga, gb) : (u, v, w) = (gµ, gµa, gµab) ∧ µ 6= 0

]
≤ ε(κ).

Now we present the non-static q-simultaneous flexible pairing assumption [AFG+10].

Definition 7 (q-SFP). The q-simultaneous flexible pairing (q-SFP) assumption states that for
all PPT adversaries A there exists a negligible function ε(·) such that:

Pr


gz, hz, gr, hu←R G∗, a, a, b, b←R G, (Rj = (zj , rj , sj , tj , uj , vj , wj))

q
j=1←

R (G7)q

s.t. each Rj satisfies (1) and (2),

(z∗, r∗, s∗, t∗, u∗, v∗, w∗)← A(Gκ, gz, hz, gr, hu, a, b, a, b, (Rj)qj=1) :

(z∗, r∗, s∗, t∗, u∗, v∗, w∗) satisfies (1) and (2) ∧ z∗ 6= 1 ∧ ∀j ∈ [q] z∗ 6= zj

 ≤ ε(κ)

where (1) and (2) are defined as:

(1) e(a, a) = e(gz, zj) · e(gr, rj) · e(sj , tj),

(2) e(b, b) = e(hz, zj) · e(hr, uj) · e(vj , wj),

In the following let Gκ = (e,G1,G2GT , p, g1, g2) be a asymmetric bilinear group. We define a
Type-2 analogon to the CDH assumption denoted as co-computational Diffie-Hellman (co-CDH)
assumption.

Definition 8 (co-CDH). Let Gκ be an asymmetric Type-2 bilinear group. For all PPT adver-
saries A there exists a negligible function ε(·) such that given

Pr
[
a, b←R Zp,A(Gκ, g1, g

a
1 , g2, g

b
2) = gab2

]
≤ ε(κ)

We also state the q-Strong Diffie-Hellman assumption in asymmetric bilinear groups [BB04,
BB08].

Definition 9 (q-SDH). Let Gκ be an asymmetric Type-2 bilinear group, α←R Z∗p and q > 0.
For all PPT adversaries A there exists a negligible function ε(·) such that

Pr

[
A(Gκ, g1, g2, g

α
2 , . . . , g

αq

2 ) =

(
c, g

1
c+α

1

)]
≤ ε(κ)

for c ∈ Zp \ {−α}

Note that due to the efficiently computable isomorphism Ψ: G2 → G1, all the elements are also
implicitly available in G1.
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We now present five further complexity assumptions used in [AL11, ALP12].We note that they
are defined in a bilinear group setting with composite order groups. Therefore, let Gκ be a
bilinear group and the order p of these two groups is is p = p1p2p3, where p1, p2, p3 are primes.
Let Gpi be the subgroup of order pi, for i ∈ {1, 2, 3} and let Gpipj be the subgroup of order
pipj , for i 6= j. Observe that when we have (u, v) ∈ Gpipj of order pi and pj , respectively, then
e(u, v) = 1Gt . We state the assumptions very informal below:

• Ass. 1 For given elements g ∈ Gp1 , X3 ∈ Gp3 and a group element T , it is hard to decide
whether T ∈ Gp1p2 or T ∈ Gp1 .

• Ass. 2 Let us assume that g,X1 ∈ Gp1 , X2, Y2 ∈ Gp2 and Y3, Z3 ∈ Gp3 . Then it is hard
to decide, given a tuple (g,X1X2, Z3, Y2Y3) and T , if T ∈ (G) or T ∈ Gp1p3 .

• Ass. 3 Let us assume that g ∈ Gp1 , X2, Y2, Z2 ∈ Gp2 , X3 ∈ Gp3 and α, s ∈ Zp. Then
given the tuple (g, gαX2, X3, g

sY2, Z2) it is hard to compute e(g, g)αs.

• Ass. 4 Let us assume that, for t ∈ Zp, the elements g, w, gt, X1 ∈ Gp1 , X2, Y2, Z2 ∈ Gp2

andX3, Y3, Z3 ∈ Gp3 are given. Having the element T ∈ G and the tuple (g, w, gt, X1X2, X3,
Y2Y3) it is hard to decide if T = wtZ3 or T = wtZ2Z3.

• Ass. 5 Let us assume that a, b, c ∈ Zp, g ∈ Gp1 , X2, Y2, Z2 ∈ Gp2 and X3 ∈ Gp3 . Then
given the tuple (g, ga, gb, gabX2, X3, g

cY2, Z2) it is hard to compute e(g, g)abc.

Now, let us come to a classic assumption, i.e., the strong RSA (sRSA) assumption [BP97].
Basically, this assumption is related to the classical RSA assumption but the exponent e could
be chosen depending on c, while in the RSA problem e is chosen independently.

Definition 10 (sRSA). Let N = pq be an RSA modulus of length κ ∈ N and p and q distinct
appropriate prime numbers and c a random element in ZN , then for all PPT adversaries A
there is a negligible function ε(·) such that:

Pr [(m, e)← A(c,N) : me ≡ c (mod N)] ≤ ε(κ)

Furthermore, we require some hardness assumptions related to lattices.

Definition 11. Given a uniform and random matrix A ∈ Zn×mq for positive integers m,n and
given an integer q, the small integer solution (SIS) is the following problem: find a nonzero
integer vector x ∈ Zmq such that Ax = 0 mod q.

Definition 12. Given a matrix A ∈ Zn×mq and k short vectors x1, x2, . . . , xk ∈ Zm such that
A ·xi = 0 mod q for any i ∈ {1, 2, . . . , k}, the k-small integer solution (k-SIS) problem consists
of finding another short vector x ∈ Zm\Q− span{x1, x2, . . . , xk} such that A · x = 0 mod q.

A variant of the above problem, called inhomogeneous small integer solution, was introduced
in [GPV08]. It consists of finding a short solution to a random inhomogeneous system.
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Definition 13. Given a uniformly random integer q, a uniformly random matrix A ∈ Zqn×m,
a syndrome u ∈ Zqn, the inhomogeneous small integer solution (ISIS) is the following problem:
find a vector of integers x ∈ Zm such that Ax = u mod q.

Remark 1.1. All the above hardness assumptions can be seen in the `2 norm if we assume that
there exist a real number β such that ||x|| ≤ β.

1.3.3 Digital Signatures

Digital signatures are an important cryptographic tool that allow to authenticate a message in a
way that everybody using the public key of the source can determine the source of the message
(authenticity) and whether the source really has authenticated the message at hand (integrity).
Consequently, digital signatures are often seen as the digital equivalent to handwritten signa-
tures (while they actually provide much stronger guarantees as the analogue version). More
formally, digital signatures can be defined as follows.

Definition 14 (Digital Signatures). A digital signature scheme DSS is a triple (DKeyGen,
DSign,DVerify) of PPT algorithms:

DKeyGen(1κ): The key generation algorithm that takes a security parameter κ ∈ N as input and
outputs a secret (signing) key sk and a public (verification) key pk with associated message
space M.4.

DSign(m, sk): The (probabilistic) signing algorithm, which takes a message m ∈M and a secret
key sk as input, and outputs a signature σ.

DVerify(σ,m, pk): The deterministic verification algorithm, which takes a signature σ, a mes-
sage m ∈ M and a public key pk as input, and outputs 1 if σ is a valid signature for m
under pk or 0 otherwise.

A digital signature scheme is required to be correct, i.e., for all security parameters κ, all (sk, pk)
generated by DKeyGen and all m ∈M one requires DVerify(DSign(m, sk),M, pk) = 1.5

For security one requires existential unforgeability under adaptively chosen-message attacks
(EUF-CMA) [GMR88], which is defined as follows:

Definition 15 (EUF-CMA). A DSS is EUF-CMA secure, if for all PPT adversaries A there is
a negligible function ε(·) such that

Pr

[
(sk, pk)← DKeyGen(1κ), (m∗, σ∗)← AODSign(·,sk)(pk) :

DVerify(σ,m∗, pk) = 1 ∧ m∗ /∈ QDSign

]
≤ ε(κ) ,

where A has access to an oracle ODSign that allows to execute the DSign algorithm and the
environment keeps track of all queries to ODSign via QDSign.

4We usually omit to mention the message space M and assume that it is implicit in the public key
5One may also tolerate that the DVerify algorithm fails with some negligible probability, which we however do

not consider explicitly.
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Hash-then-Sign. In digital signature schemes the message space is limited to some scheme
(and security parameter) specific set M. In order to extend the message space to (nearly)
arbitrary message sizes one usually applies the so called hash-then-sign paradigm.

This paradigm takes an EUF-CMA secure DSS Σ and constructs an EUF-CMA secure DSS
Σ′ for arbitrary message spaces as follows: Use a collision resistant hash function H to map any
arbitrary length message m to M before applying Sign of Σ.

The following theorem is straightforward to prove and can be found for instance in [Kat10].

Theorem 1.1. If Σ is EUF-CMA secure and H is collision resistant, then Σ′ is EUF-CMA
secure

For a more extensive treatment and relaxed security notions of digital signature schemes (which
are not required here) we refer the reader to the excellent textbook by Katz [Kat10].

1.3.4 Public Key Encryption

Definition 16 (Public Key Encryption). A public-key encryption scheme ENC is a tuple of
PPT algorithms (EKeyGen,Enc,Dec):

EKeyGen(1κ): This probabilistic algorithm takes a security parameter κ and outputs a pair of
keys (sk, pk) (pk fixes plaintext a space M and a ciphertext space C, which me do not
make explicit below).

Enc(m, pk): This (probabilistic) encryption algorithm takes a message m ∈M and a public key
pk and outputs a ciphertext c ∈ C.

Dec(c, sk): This deterministic decryption algorithm takes a ciphertext c ∈ C and a private key
sk and outputs m ∈M∪ {⊥} (where ⊥ indicates an error).

For correctness one requires that

∀(sk, pk)← EKeyGen(1κ) : Pr [Dec(Enc(m, pk), sk) = m] = 1− ε(κ)

where the probability is required to be 1 in case of perfect correctness. Moreover, as we do only
require indistinguishability under chosen-plaintext attacks (IND-CPA) security in this report
we subsequently define IND-CPA and refer the reader to the literature for stronger security
definitions.

Definition 17 (IND-CPA). A ENC scheme is called IND-CPA secure, if for all PPT adversaries
A there is a negligible function ε such that:

Pr

[
(pk, sk)← EKeyGen(1κ), ((m0,m1), state)← A(pk),

b← {0, 1}, c← Enc(mb, pk), b∗ ← A(state, c) : b∗ = b

]
≤ 1

2
+ ε(κ).
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1.3.5 Non-Interactive Proof Systems

Definition 18 (Non-Interactive Proof System). A non-interactive proof system Π is a tuple of
algorithms (Gen, Proof, Verify), which are defined as follows:

Gen(1κ): A PPT algorithm that takes a security parameter κ, and outputs a common reference
string crs.

Proof(crs, x, w): An algorithm that takes a common reference string crs, a statement x, and a
witness w, and outputs a proof π.

Verify(crs, x, π): A PPT algorithm that takes a common reference string crs, a statement x, and
a proof π, and outputs 1 if π is valid and 0 otherwise.

If Proof also runs in PPT, we are talking about a non-interactive argument system. Followingly,
we state the required security properties (adapted from [BGI14, CKLM14, GS08, Mei09]). Let
R be an NP-relation such that (x,w) ∈ R iff w is a satisfying witness for x. Furthermore, let
LR be the corresponding NP-language of statements in R.

A non-interactive zero-knowledge proof system is required to satisfy the following security def-
initions:

Definition 19 (Completeness). A non-interactive proof system (Gen, Proof, Verify) is complete,
if for every adversary A it holds that

Pr
[
crs← Gen(1κ), (x,w)← A(crs), π ← Proof(crs, x, w) :

Verify(crs, x, π) = 1 ∧ (x,w) ∈ R
]

= 1.

Definition 20 (Soundness). A non-interactive proof system (Gen, Proof, Verify) is sound, if
for every PPT adversary A there is a negligible function ε(·) such that

Pr
[
crs← Gen(1κ), (x, π)← A(crs) : Verify(crs, x, π) = 1 ∧ x /∈ LR

]
≤ ε(κ).

(Gen,Proof,Verify) is perfectly sound, if ε = 0.

Definition 21 (Witness Indistinguishability). A non-interactive proof system is witness indis-
tinguishable, if for every PPT adversary A there is a negligible function ε(·) such that

Pr
[
crs←R Gen(1κ), b←R {0, 1}, (x,w0, w1, st)← A(crs), π ← Proof(crs, x, wi),

b∗ ← A(π, st) : b = b∗ ∧ (x,w0) ∈ R ∧ (x,w1) ∈ R
]
≤ 1

2
+ ε(κ).

(Gen,Proof,Verify) is perfectly witness indistinguishable, if ε = 0.
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Definition 22 (Adaptive Zero-Knowledge). A non-interactive proof system is adaptive zero-
knowledge, if there exists a simulator S = (S1, S2) such that for every PPT adversary A there
is a negligible function ε(·) such that∣∣∣Pr

[
crs←R Gen(1κ) : AP(crs,·,·)(crs) = 1

]
−

Pr
[
(crs, τs)←R S1(1κ) : AS(crs,τs,·,·)(crs) = 1

]∣∣∣ ≤ ε(κ),

where, τs denotes a simulation trapdoor. Thereby, P and S return ⊥ if (x,w) /∈ R or π←R Proof(
crs, x, w) and π←R S2(crs, τs, x), respectively, otherwise. (Gen,Proof,Verify) is perfect adaptively
zero-knowledge, if ε = 0.

We talk about zero-knowledge proofs of knowledge (ZKPoK) or zero-knowledge arguments of
knowledge (ZKAoK), if they satisfy the following extractability definition.

Definition 23 (Extractability). A non-interactive proof system (Gen, Proof, Verify) is ex-
tractable, if there exists an extractor E = (E1, E2) such that (1) for every PPT adversary
A it holds that

Pr
[
crs←R Gen(1κ) : A(crs) = 1

]
≈ Pr

[
(crse, τe)←R E1(1κ) : A(crse) = 1

]
and (2) for every PPT adversary A′ there is a negligible function ε(·) such that

Pr
[
(crse, τe)←R E1(1κ), (x, π)←R A′(crse) :

Verify(crse, x, π) = 1 ∧ (x,E2(crse, τe, x, π)) /∈ R
]
≤ ε(κ).

(Gen,Proof,Verify) is perfectly extractable, if ε = 0 and crse as well as crs are distributed iden-
tically.

Malleable Proofs. In the following, we are going to consider NP-relations R, which are
closed with regard to a transformation T = (Tinst, Twit) meaning that if (x,w) ∈ R, then also
(Tinst(x), Twit(w)) ∈ R. Then, a malleable proof system, is a non-interactive proof system defined
for such a relation R and augmented by an additional algorithm ZKEval whose purpose is to
transform proofs by applying T .

Definition 24 (Malleable Proof System [CKLM12]). A non-interactive proof system Π =
(Gen,Proof,Verify) is malleable with respect to a set of transformations T , if there exists an
efficient algorithm ZKEval:

ZKEval(crs, T, x, π): On input a CRS, a transformation T ∈ T , an instance x plus a proof π
such that Verify(crs, x, π) = 1, this algorithm outputs a proof π′ for x′ = T (x) such that
Verify(crs, x′, π′) = 1.

We speak of controlled malleability, if an extractor—when given an adversarially generated proof
π for some instance x—is able to extract either a witness w or a transformation T ∈ T plus a
previous instance x′ such that x = Tinst(x

′) from π:
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Definition 25 (Controlled-Malleable Simulation-Sound Extractability [CKLM12]). A NIZKPoK
system (Gen, Proof, Verify, ZKEval) being malleable with respect to a set of unary transforma-
tions T defined on some relation R and having a simulator/extractor SE = (SE1, S2, E2) is
controlled-malleable simulation-sound extractable, if for every PPT adversary A there is a
negligible function ε(·) such that

Pr



(crs, τs, τe)←R SE1(1κ),

(x, π)←R AS2(crs,τs,·)(crs, τe),
(w, x′, T )← E2(crs, τe, x, π), : b = 1 ∧ Verify(crs, x, π) = 1 ∧ (x, π) 6∈ Q
b← (w 6= ⊥ ∧ (x,w) 6∈ R)∨

((x′, T ) 6= (⊥,⊥)∧
(x′ 6∈ Qinst∨
x 6= Tinst(x

′)∨
T 6∈ T )∨

(w, x′, T ) = (⊥,⊥,⊥))


≤ ε(κ),

where Q = Qinst × Qproof is a list to keep track of instances queried to S2 and given that
membership tests in T are efficient.

Informally, the following property demands that an adversary should be unable to distinguish
transformed proofs from simulated transformed proofs.

Definition 26 (Derivation Privacy [CKLM12]). A NIZKPoK system (Gen, Proof, Verify, ZKE-
val) being malleable with respect to a set of transformations T defined on some relation R and
having a simulator S = (S1, S2) is derivation private, if for every PPT adversary A there is a
negligible function ε(·) such that

Pr



(crss, τs)←R S1(1κ),
(st, (xi, πi)i∈[q], T )←R A(crss, τs),
Return ⊥ if (T 6∈ T ∨ ∃i ∈ [q] : Verify(crss, xi, πi) = 0),
Else if b = 0 : π←R S2(crss, Tinst((xi)i∈[q])), : b = b∗

Else if b = 1 : π←R ZKEval(crss, T, (xi, πi)i∈[q]),

b∗←R A(st, σ)

 ≤ ε(κ).

1.3.6 Indistinguishability Obfuscation for Random Oracles

For the construction of operational signature schemes (cf. Section 2.5) we need a combination
of indistinguishability obfuscation (iO) [BGI+12, GGH+13] and random oracles which has been
introduced in [BDF+14]. We briefly sketch the idea of their approach and then provide their
formal definition. Basically, the idea is to have an obfuscator for a curcuit CH(·) with access to
a random oracle H which is of the form CH(x) = C ′(x,H(x)) and the obfuscation is performed
for the C ′ part (for which indistinguishability is required) and the random oracle is instantiated
by some real code for H in any instantiation (where it has to be guaranteed that one cannot
inject intermediate values into the circuit, e.g., after evaluating H).
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Definition 27 (Oracle Indistinguishability Obfuscator [BDF+14]). A uniform PPT machine
iO is called an oracle indistinguishability obfuscator with respect to an oracle h for a class {Cκ}
of oracle circuits with upstream hashing only, if the following conditions are satisfied:

Correctness: For all security parameters κ ∈ N, for all CH(·) = C ′(·, H(·)) ∈ Cκ with up-
stream hashing only, and for all inputs x. we have that

Pr[O(x,H(x)) = CH(x) : O ← iO(κ,C ′) for CH(·) = C ′(·, H(·))] = 1.

Indistinguishability: For any (not necessarily uniform) PPT adversaries Samp, D, there
exists a negligible function ε(·) such that the following holds: if Pr[CH0 (x) = CH1 (x) :
(CH0 , C

H
1 , aux)← Samp(1κ)] > 1− ε(κ), then we have:∣∣Pr[DH(aux, iO(κ,C ′0)) = 1 : (CH0 , C

H
1 , aux)← Samp(1κ)]

−Pr[DH(aux, iO(κ,C ′1)) = 1 : (CH0 , C
H
1 , aux)← Samp(1κ)]

∣∣ ≤ ε(κ)

where CHb (x) = C ′b(x,H(x)) for b ∈ {0, 1}.

WP: WP4 Deliverable: D4.4 Page: 19 of 114
Reference: prismacloud.eu Dissemination: PU Version 1.0 Status: Final

http://prismacloud.eu


Privacy and Security Maintaining Services in the Cloud
Overview of Functional and Malleable Signature Schemes

2 General Frameworks

In this section we review general framework that cover different types of functional as well
as malleable/homomorphic signature schemes. In particular, we review a framework denoted
functional digital signatures (cf. Section 2.1) and another denoted as policy-based signatures
(cf. Section 2.2). We consider both of them to be in the class of functional signature schemes.
Then, we review malleable signatures for general transformations (cf. Section 2.3) as well as P -
homomorphic signatures (cf. Section 2.4), which cover different instantiations of malleable sig-
natures for arithmetics and editing. Finally, we review operational signatures (cf. Section 2.5),
which capture the aforementioned frameworks of functional signatures, P -homomorphic signa-
tures and also various other types of other malleable signatures for editing (such as sanitizable
signatures to be discussed in Section 5). Moreover, operational signatures also cover other
classes of signatures such as ring [RST01] or aggregate signatures [BGLS03a].

2.1 Functional Digital Signatures

Like in a conventional signature scheme, in a functional digital signature (FS) scheme [BGI14]
there is a signing key sk (called a master signing key in FS) that allows to produce a signa-
ture on any message. However, additionally there are secondary signing keys skf , which are
parametrized by a function f and those restrict the signing capabilities to messages in the range
of f , i.e., given any m the key skf only allows to produce signatures for f(m).6

2.1.1 Formal Definitions

Definition 28 (Functional Signatures [BGI14]). A functional signature (FS) scheme for a
message space M and function family F = {f : Df →M} consists of the following polynomial
time algorithms:

FS.Setup(1κ) : The setup algorithm takes as input the security parameter κ and outputs the
master signing key msk and master verification key mvk.

FS.KeyGen(msk, f) : The key generation algorithm takes as input the master signing key msk
and a function f ∈ F (represented as a circuit) and outputs a signing key skf for f .

FS.Sign(f, skf ,m) : The signing algorithm takes as input the signing key skf for a function
f ∈ F and an input m ∈ Df and outputs f(m) and a signature σ for f(m).

FS.Verify(mvk,m, σ) : The verification algorithm takes as input a master verification key mvk,
a message m and a signature σ and outputs 1 if the signature is valid or 0 otherwise.

6We again note that in Section 3 we use the term functional signatures for a class of schemes that contains
FS, but contains also other schemes that may not fall into this framework.
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For correctness one requires that

∀f ∈ F , ∀m ∈ Df , (msk,mvk)← FS.Setup(1κ), skf ← FS.KeyGen(msk, f),

(m,σ)← FS.Sign(f, skf ,m) : FS.Verify(mvk,m, σ) = 1.

Furthermore, as within conventional signature schemes one requires unforgeability under adap-
tive chosen message attacks. Additionally, one requires the properties function privacy and
succinctness.

For unforgeability we require the following oracles, where both oracles share a dictionary indexed
by tuples (f, i) ∈ F × N whose entries are signing keys skif ← FS.KeyGen(msk, f) generated
throughout the security game:

OKeyGen(f, i) : If there does not exists an entry for the key (f, i), then compute skif ← FS.KeyGen(

msk, f), add skif for index (f, i) to the dictionary and return skif . Otherwise look up (f, i)

and return the corresponding value skif .

OSign(f, i,m) : If there does not exist an entry for (f, i) in the dictionary, then run skif ←
FS.KeyGen(msk, f), add skif for index (f, i) to the dictionary and return FS.Sign(f, skif ,m).

Otherwise look up (f, i), take the value skif and return FS.Sign(f, skif ,m).

Let us denote by QKeyGen and QSign the queries issued to the two oracles.

Definition 29 (Unforgeability:). A FS scheme is called unforgeable, if for all PPT adversaries
A there is a negligible function ε(·) such that

Pr

 (msk,mvk)← FS.Setup(1κ),O ← {OKeyGen(·, ·),OSign(·, ·, ·)},
(m∗, σ∗)← AO(mvk) : FS.Verify(mvk,m∗, σ∗) = 1 ∧ @ m s.t. m∗ = f(m)

∀(f, ·) ∈ QKeyGen ∧ @ (f,m) s.t. m∗ = f(m) ∀(f, ·,m) ∈ QSign

 ≤ ε(κ) ,

The notion of function privacy intuitively requires that the distribution of signatures on a
message generated via different signing keys to be computationally indistinguishable, even when
given all the signing keys and the master signing key (modeled below by giving the randomness
r for FS.Setup to the adversary).

Definition 30 (Function privacy:). For all PPT adversaries A there is a negligible function
ε(·) such that

Pr


(msk,mvk)← FS.Setup(1κ; r), (f0, st)← A(msk,mvk, r),

skf0 ← FS.KeyGen(msk, f0), (f1, st)← A(skf0 , st), skf1 ← FS.KeyGen(
msk, f1), (m0,m1, st)← A(skf1 , st), b←

R {0, 1}, (fb(mb), σ
∗)← FS.Sign(

fb, skfb ,mb), b
∗ ← A(σ∗, st) : b∗ = b

− 1

2
≤ ε(κ) ,

where one requires from the challenge functions that |f0| = |f1| (where padding may be used if
there is a known upper bound). Moreover for the challenge messages one requires that |m0| =
|m1| and f0(m0) = f1(m1).
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Definition 31 (Succinctness:). There exists a polynomial s(·, ·) such that for every κ ∈ N,
f ∈ F , m ∈ Df

Pr

[
(msk,mvk)← FS.Setup(1κ), skf ← FS.KeyGen(msk, f),

(f(m), σ)← FS.Sign(f, skf ,m) : |σ| ≤ s(κ, |f(m)|).

]
= 1 .

In particular, the signature size is independent of the size |m| of the input to the function, and
of the size |f | of a description of the function f .

2.1.2 Constructions

Subsequently, we briefly discuss the three constructions presented in [BGI14]. The first relies
on EUF-CMA secure conventional signature schemes but does neither achieve function privacy
nor succintness. However, it can be instantiated based on standard assumptions, i.e., one-way
functions [Rom90].

The second construction builds upon the first one, but additionally requires a zero-knowledge
succinct non-interactive argument of knowledge (SNARK) system [BCCT13] in order to achieve
function privacy and succinctness. This succinctness, however, comes at the cost of non-
falsifiable assumptions [GW11].

Finally, the third construction drops the succinctness requirement but still achieves function
privacy. This is achieved using a non-interactive zero-knowledge arguments of knowledge (NIZK-
AoK) system instead of SNARKs and thus can again be based on standard assumptions.

OWF-based Construction. Below we present an OWF-based construction which we denote
by FS1. For this construction let (DKeyGen, DSign,DVerify) be an EUF-CMA secure conven-
tional signature scheme (which can be constructed from any OWF [Rom90]).

FS1.Setup(1κ) : Run (sk, pk)← DKeyGen(1κ) and output the master signing key msk← sk and
master verification key mvk← pk.

FS1.KeyGen(msk, f) : Run (sk, pk) ← DKeyGen(1κ), compute σpk ← DSign(f ||pk,msk), assem-
ble a certificate c← (f, pk, σpk) and return skf ← (sk, c).

FS1.Sign(f, skf ,m) : Parse skf as (sk, c), compute σm ← DSign(m, sk) and output (f(m), σ)
with σ ← (m, c, σm).

FS1.Verify(mvk,m′, σ) : Parse σ as (m, c = (f, pk, σpk), σm) and check whether

1. m′ = f(m),

2. DVerify(σm,m, pk) = 1,

3. DVerify(σpk , pk||f,mvk) = 1, and

return 1 if so and 0 otherwise.

Theorem 1 ([BGI14]). If (DKeyGen, DSign,DVerify) is EUF-CMA secure, then FS1 is an
unforgeable functional signature scheme.
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SNARK-based Construction. Below we present a SNARK-based construction which we
denote by FS2. Therefore, let FS1 be an unforgeable FS scheme (which is not necessarily function
private nor succinct). Moreover, let Π = (Gen,Prove,Verify,S = (Scrs,SProof), E = (E1, E2)) be
an efficient adaptive zero-knowledge SNARK system for the NP language L defined as

L = {(m,mvk) | ∃σ s.t. FS1.Verify(mvk,m, σ) = 1}.

Now, we are ready to present the construction.

FS2.Setup(1κ) : Run (mvk′,msk′) ← FS1.KeyGen(1κ), crs ← Π.Gen(1κ) and output the master
signing key msk← msk′ and master verification key mvk← (msk′, crs).

FS2.KeyGen(msk, f) : Return skf ← FS1.KeyGen(msk, f).

FS2.Sign(f, skf ,m) : Compute (f(m), σ′) ← FS1.Sign(f, skf ,m). Additionally, generate π ←
Π.Proof((f(m),mvk′), σ′, crs) and return (f(m), π).

FS2.Verify(mvk,m′, σ) : Output Π.Verify(crs,m′, σ).

Theorem 2 ([BGI14]). If there exists an unforgeable (but not necessarily succinct or function-
private) functional signature scheme FS1 supporting class F of polynomial-sized circuits and let
Π be an adaptive zero-knowledge SNARK system for NP, then there exists succinct, function-
private functional signatures for F .

NIZK-based Construction. In the NIZK-based construction one simply replaces the effi-
cient adaptive zero-knowledge SNARK system Π of the construction FS2 with an non-interactive
zero-knowledge argument of knowledge (NIZKAoK) system Π′.

Theorem 3 ([BGI14]). If (DKeyGen, DSign,DVerify) is EUF-CMA secure and Π′ is a NIZKAoK
system, then FS3 is an unforgeable and function-private functional signature scheme.

2.1.3 Applications

Functional signatures have two very interesting applications, which we are going to briefly sketch
below.

Delegation of Signing Rights. Functional signatures can be seen as a generalization of
proxy-signature schemes (cf. Section 3.1). Loosely speaking proxy-signature schemes allow a
party (the delegator) to delegate signing rights (for a well defined set of messages) to another
party (the delegatee). The delegatee can then produce signatures on behalf of the delegator (for
allowed messages). For instance, as discussed in [BGI14], with a functional signature scheme,
the holder of a master signing key msk could delegate a signing key skf with

f(m) =

{
m if P (m) = 1

⊥ otherwise.
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and P (·) being a predicate such as ”signed by delegatee x” to a delegatee. The predicate could
also be more complex and check if some certain substring is present or not or if it satisfies a
certain policy. If the FS scheme is function-private, then this policy can also be hidden, yielding
additional privacy guarantees.

Function privacy (to a more limited degree) has also been investigated in context of proxy-
signatures and schemes that are function private are there called warrant-hiding proxy-signature
schemes [HS13b]. However, in contrast to functional signature schemes where the function f
could be an arbitrary circuit, the aforementioned proxy-signature schemes only consider func-
tions as being an enumeration of it’s range. Thus only functions with compact enumerations of
it’s range can be supported. Nevertheless, known constructions (cf. [HS13b]) achieve succinct-
ness.

Verifiable Computations. Functional signatures can be straightforwardly used to construct
verifiable computation schemes with efficient verification as discussed in [BGI14]. In such
schemes a client outsources the computation of some function f for some client-chosen input m
to some other party, who—along with the result f(m)—delivers some additional information
π that allows to efficiently check the correctness of the result f(m). Here, the client can give
the other party a key skf ′ for a function f ′(x) := (f(x)||x). Then, to prove that for a result y
returned to the client it indeed holds that y = f(x), the prover issues a signature for y||x which
the prover can only obtain if y||x is in the range of f ′ and thus y = f(x).

Finally, we note that Papamanthou et al. [PST13] have defined a concept denoted signatures of
correct computation, which is similar to the framework of functional signatures. However, their
approach is tailored towards the application of verifiably outsourcing computations.

2.2 Policy-Based Signatures

Policy-based signatures (PBS) [BF14] allow to restrict the message space a signer is allowed
to sign via so called policies. More precisely, a trusted authority issues a secret signing key
skp to a signer. This key corresponds to a policy p ∈ {0, 1}∗ and allows to issue signatures σ
on messages m ∈ {0, 1}∗ if (p,m) is contained in a language LPC ⊆ {0, 1}∗ × {0, 1}∗. A tuple
(p,m) is contained in this language if there exists a witness w attesting that m satisfies p, i.e.,
PC((m, p), w) = 1, where PC : {0, 1}∗ × {0, 1}∗ → {0, 1} is an NP-relation. Signatures are then
verified using the authority’s public parameters pp. We note that the policy in PBS can be seen
as a function f in the framework of functional digital signatures (cf. Section 2.1).

2.2.1 Formal Definitions

Subsequently, we recall the model of PBS.

Definition 32 (PBS Scheme). A PBS scheme is a tuple (Setup,KeyGen,Sign,Verify) of efficient
algorithms, which are defined as follows:
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PBS.Setup(1κ): This algorithm takes a security parameter κ as input and outputs the public
parameters pp and a master secret key msk.

PBS.KeyGen(pp,msk, p): This algorithm takes public parameters pp, a master secret key msk
and a policy p as input and outputs a signing key skp for p.

PBS.Sign(pp, skp,m,w): This algorithm takes public parameters pp, a signing key skp, a message
m and a witness w as input and outputs a signature σ.

PBS.Verify(pp,m, σ): This algorithm takes public parameters pp, a message m and a signature
σ as input and outputs a bit b.

For security, PBS are required to be correct, unforgeable and indistinguishable. In addition,
PBS may provide simulatability and extractability, which can be seen as even stronger security
requirements. That is, any PBS that is simulatable and extractable is also unforgeable and in-
distinguishable [BF14, Theorem 1]. Below, we recall the respective security definitions (adapted
to our notation).

Definition 33 (Unforgeability). A PBS scheme is called unforgeable, if for every PPT adversary
A there exists a negligible function ε(·) such that

Pr

 (pp,msk)←R PBS.Setup(1κ),O ← {OKeyGen(pp,msk, ·, ·),ORevealSK(·),
OSign(pp, ·, ·, ·)}, (m,σ)← AO(pp) : PBS.Verify(pp,m, σ) = 1 ∧

@ i : (m ∈ QSign[i] ∨ (m,QRevealSK[i][1]) ∈ LPC)

 ≤ ε(κ),

where the environment maintains the lists QKeyGen,QRevealSK and QSign to keep track of the
oracle queries and the oracles are defined as follows:

OKeyGen(pp,msk, i, p) takes public parameters pp, a master secret key msk, an index i and a pol-
icy p as input. If QKeyGen[i] 6= ∅, it returns ⊥. Otherwise, it runs skp←R PBS.KeyGen(pp,msk,
p) and sets QKeyGen[i]← (p, skp).

ORevealSK(i) takes an index i as input and returns ⊥ if QKeyGen[i] = ∅. Otherwise it obtains
(p, skp)← QKeyGen[i], sets QRevealSK[i]← (p, skp) and returns skp.

OSign(pp, i,m,w) takes public parameters pp, an index i, a message m and a witness w. If
QKeyGen[i] = ∅ or QRevealSK[i] 6= ∅ it returns ⊥. Otherwise, it sets QSign[i]← QSign[i]∪{m}
and returns PBS.Sign(pp,QKeyGen[i][2],m,w).

Definition 34 (Indistinguishability). A PBS scheme is called indistinguishable, if for every
PPT adversary A there exists a negligible function ε(·) such that

Pr
[
(pp,msk)←R PBS.Setup(1κ), b←R {0, 1},

b∗ ← AOLoR(pp,msk,·,·,·,·,·,b)(pp,msk) : b = b∗
]
≤ 1

2
+ ε(κ),

where OLoR is defined as follows:
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OLoR(pp,msk, p0, p1,m,w0, w1, b) : This oracle takes public parameters pp a master secret key
msk, a bit b, two policies p0, p1, a message m, two witnesses w0, w1 and a bit b as in-
put. If PC((p0,m), w0) 6= 1 or PC((p1,m), w1) 6= 1 it returns ⊥. Otherwise, it computes
skp0 ←

R PBS.KeyGen(pp,msk, p0), skp1 ←
R PBS.KeyGen(pp,msk, p1), σb←R Sign(pp, skb,m,wb)

and returns (σb, skp0 , skp1).

Definition 35 (Simulatability). A PBS is called simulatable if there exists a PPT simulator
{SimSetup, SimKeyGen, SimSign}, such that for every PPT adversary A there exists a negligible
function ε(·) such that∣∣∣∣∣∣∣∣Pr


(pp,msk)←R Setup(1κ),
O ← {OKey(pp,msk, ·, ·),
OSign(pp, ·, ·, ·)} :
AO(pp,msk) = 1

− Pr


(pp,msk, τs)←R SimSetup(1κ),
O ← {OSimKey(pp, τs, ·, ·),
OSimSign(pp, τs, ·, ·, ·)} :
AO(pp,msk) = 1


∣∣∣∣∣∣∣∣ ≤ ε(κ)

where SimSetup additionally outputs a simulation trapdoor τs. Furthermore, the environment in-
ternally maintains the lists QKey,QSimKey,QSign and provides oracle access to OKey,OSimKey,OSign,
OSimSign, which are defined as follows:

OKey(pp,msk, i, p) takes public parameters pp, a master secret key msk, an index i and a policy p
as input. If QKeyGen[i] 6= ∅, it returns ⊥. Otherwise, it runs skp←R PBS.KeyGen(pp,msk, p),
sets QKeyGen[i]← (p, skp) and returns skp.

OSimKey(pp, τs, i, p) takes public parameters pp, a simulation trapdoor τs, an index i and a policy
p as input. If QSimKeyGen[i] 6= ∅, it returns ⊥. Otherwise, it runs skp←R SimKeyGen(pp,
τs, p), sets QSimKeyGen[i]← p and returns skp.

OSign(pp, i,m,w) takes public parameters pp, an index i, a message m and a witness w. If
QKeyGen[i] = ∅ it returns ⊥. Otherwise, it returns PBS.Sign(pp,QKeyGen[i][2],m,w).

OSimSign(pp, τs, i,m,w) takes public parameters pp, a simulation trapdoor τs, an index i, a mes-
sage m and a witness w. If QSimKeyGen[i] = ∅ or PC((QSimKeyGen[i],m), w) 6= 1 it returns
⊥. Otherwise, it returns SimSign(pp, τs,m).

Definition 36 (Extractability). A PBS is called extractable if there exists a PPT simulator
{SimSetup, SimKeyGen, SimSign} and a PPT extraction algorithm Extr, such that for every PPT
adversary A there exists a negligible function ε(·) such that

Pr

 (pp,msk, τs)←R SimSetup(1κ),O ← {OSimKey(pp, τs, ·),OSimSign(pp, τs, ·)},
(m,σ)← AO(pp), (p, w)← Extr(τs,m, σ) : Verify(pp,m, σ) = 1 ∧

(m,σ) /∈ QSimSign ∧ (p /∈ QSimKey ∨ PC((p,m), w) 6= 1)

 ≤ ε(κ),

where the environment maintains the lists QSimKey and QSimSign to keep track of the queries to
OSimKey and OSimSign, which are defined as follows:

OSimKey(pp, τs, p) takes public parameters pp, a simulation trapdoor τs and a policy p as input.
It sets QSimKey ← QSimKey ∪ {p}, and returns SimKeyGen(pp, τs, p).

OSimSign(pp, τs,m) takes public parameters pp, a simulation trapdoor τs and a message m as
input. It computes σ←R SimSign(pp, τs,m), sets QSimSign ← QSimSign∪{(m,σ)} and returns
σ.
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2.2.2 Constructions

Subsequently, we introduce the generic construction of PBS from [BF14]. It builds upon a
NIZK proof system Π = (Gen,Prove,Verify), an EUF-CMA secure signature scheme DSS =
(DKeyGen,DSign,DVerify), a strongly unforgeable one-time signature scheme OTS = (OKeyGen,
OSign,OVerify) and an IND-CPA secure encryption scheme ENC = (EKeyGen,Enc,Dec). The
NIZK proof system is used to prove knowledge of a witness for the following relation:

((pke,mvk, Cp, Cs, Cw, pkots,m), (p, s, w, ρp, ρs, ρw)) ∈ R
⇔ Cp ← Enc(p, pke; ρp) ∧ Cs ← Enc(s, pke; ρs) ∧ Cw ← Enc(w, pke; ρw) ∧

[DVerify(s, 1||p,mvk) = 1 ∧ PC((p,m), w) = 1 ∨ DVerify(s, 0||ovk,mvk) = 1].

Now, we are ready to introduce the construction:

PBS.Setup(1κ) : This algorithm runs crs←R Gen(1κ), (ske, pke)←
R EKeyGen(1κ), (msk,mvk)←R

DKeyGen(1κ) and returns pp← (κ, crs, pke,mvk) and msk.

PBS.KeyGen(pp,msk, p) : This algorithm runs s←R DSign(1||p,msk) and returns skp ← (p, s).

PBS.Sign(pp, skp,m,w) : If PC((p,m), w) 6= 1, this algorithm returns ⊥. Otherwise it runs
(skots, pkots)←

R OKeyGen(1κ), chooses ρp, ρs, ρw←R {0, 1}κ and computes Cp ← Enc(p, pke;
ρp), Cs ← Enc(s, pke; ρs), Cw ← Enc(w, pke; ρw). Furthermore it computes π←R Π.Prove(
crs, (pke,mvk, Cp, Cs, Cw, pkots,m), (p, s, w, ρp, ρs, ρw)), τ ←R OSign(m||Cp||Cs||Cw||π, skots)
and returns σ ← (pkots, Cp, Cs, Cw, π, τ).

PBS.Verify(pp,m, σ) : If Π.Verify(crs, (pke,mvk, Cp, Cs, Cw, pkots,m), π) = 1 and OVerify(τ,m||
Cp||Cs||Cw||π, pkots) = 1 this algorithm returns 1 and 0 otherwise.

Subsequently, we recall how the simulator is implemented.

SimSetup(1κ) : This algorithm runs crs←R Gen(1κ), (ske, pke)←
R EKeyGen(1κ), (msk,mvk)←R

DKeyGen(1κ) and returns pp← (κ, crs, pke,mvk), msk and τs ← (msk, ske).

SimKeyGen(pp,msk, p) : This algorithm runs s←R DSign(1||p,msk) and returns skp ← (p, s).

SimSign(pp, tk,m,w) : This algorithm computes s←R DSign(0||pkots,msk) runs (skots, pkots)←
R

OKeyGen(1κ), chooses ρp, ρs, ρw←R {0, 1}κ and computes Cp ← Enc(0, pke; ρp), Cs ←
Enc(s, pke; ρs), Cw ← Enc(0, pke; ρw). Furthermore it computes π←R Π.Prove(crs, (pke,
mvk, Cp, Cs, Cw, pkots,m), (0, s, 0, ρp, ρs, ρw)), τ ←R OSign(m||Cp||Cs||Cw||π, skots) and re-
turns σ ← (pkots, Cp, Cs, Cw, π, τ).

Extr(pp,m, σ) : This algorithm computes p ← Dec(Cp, ske), w ← Dec(Cw, ske) and returns
(p, w).

Theorem 4 ([BF14, Theorem 4]). The construction above is simulatable and extractable (and
thus also unforgeable and indistinguishable).
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The authors also proposed an efficient instantiation using a structure-preserving signature
scheme for vectors of group elements (cf. [AFG+10]), a one-time signature scheme, and Groth-
Sahai (GS) proofs [GS08]. For a detailed discussion of this instantiation, we refer the reader to
[BF14]. We note that one does not need the encryption scheme when using GS proofs, since
they directly allow to extract the respective witnesses.

In addition to the construction presented above, [BF14] also introduced a construction based on
a single signature scheme and simulation-extractable (SE) NIZK proofs [Gro06]. This yields a
simpler construction at the cost of a more complex underlying primitive (SE-NIZK). Since the
basic principles of the scheme are quite similar to the construction above, we refer the reader
to [BF14] for further details about the construction.

2.2.3 Applications

Likewise to the framework of functional digital signatures discussed before, PBS are a rather
generic framework and thus can be used in various applications. Among others, [BF14] show
that PBS imply group signatures [BMW03], attribute-based signatures [MPR11] and signatures
of knowledge [CL06].

In our context, we are particularly interested in the delegation of signing rights to third parties,
which can easily be achieved using PBS. In addition, [BF14] provides an extension to model
hierarchies by allowing parties to further delegate a subset of their signing rights to subsequent
parties. Due to the generality of the relations that can be covered by the policies, PBS may
also be applicable to verifiable computations as already discussed in Section 2.1.3.

2.3 Malleable Signatures for General Transformations

Malleable signatures (cf. Section 4 and Section 5) are signature schemes, which allow controlled
transformations (e.g. arithmetical ones) on message-signature pairs and, thereby, uphold the
validity of the resulting message-signature pair. One important aspect of such schemes, is a
property called context-hiding, which guarantees that derived signatures are indistinguishable
from freshly generated signatures on the same message. In a nutshell, a signature scheme
(KeyGen,Sign,Verify) is malleable if it features an additional algorithm SigEval that—when given
(among others) message-signature pairs (~m,~σ) and an admissible transformation T—allows for
obtaining a signature σ′ on m′ = T (~m). We note that transformations are very general and can
implement policies such as for instance used in policy-based signatures or genereal functions7.

In [CKLM14], Chase et. al give new definitions for malleable signature schemes having general
transformations and present according security definitions. The authors do not only general-
ize the concepts of previous works [ABC+12, ALP12] (i.e., the framework of P -homomorphic
signatures to be discussed in Section 2.4), but also strengthen previous security definitions.
Additionally, they give a generic construction for malleable signatures allowing unary transfor-

7Actually, the authors show that their framework implies several other concepts such as policy-based signatures
[BF14] (cf. Section 2.2) as well as delegatable functional signatures [BMS13] (cf. Section 2.5)
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mations from controlled-malleable non-interactive zero-knowledge proofs (cm-NIZK) and show
how to build delegatable anonymous credentials from it.

2.3.1 Formal Definitions

At first, we will restate the malleability definition from [CKLM14].

Definition 37 (Malleable Signature Scheme). A signature scheme (KeyGen, Sign,Verify) is mal-
leable with regard to a set of allowed transformations T that is closed under composition if it
has an additional efficient algorithm SigEval:

SigEval(pk, T, ~m,~σ): This algorithm takes as input a public key pk, a transformation T and a
list of valid message-signature pairs ~m,~σ and outputs a signature σ′ on m′ = T (~m).

A malleable signature scheme is required to be unforgeable and context-hiding. In the following,
we will give these definitions in the context of simulatable malleable signature schemes. In
doing so, we start by giving the definition of a simulatable signature scheme, which differs from
the ordinary definition (cf. Section 1.3.3) in introducing a setup algorithm Gen responsible for
setting up a common-reference string (CRS) crs 8 and an additional algorithm KeyCheck:

Definition 38. A signature scheme (Gen,KeyGen, Sign,Verify) is simulatable if there exists an
efficient algorithm KeyCheck

KeyCheck(crs, pk, sk): This algorithm takes as input a common-reference string crs, a public key
pk and a secret key sk and outputs a bit b indicating whether (pk, sk) is a valid key pair
under crs.

and an efficient simulator (SimGen, SimSign) such that the CRS in (crs, τs)←R SimGen(1κ) as
well as the signatures output by SimSign when given the trapdoor τs are indistinguishable from
their honestly computed counterparts. This is subsumed as follows:

Pr[crs←R Gen(1κ) : AS(crs,·,·,·)(crs) = 1] ≈ Pr[(crs, τs)←R SimGen(1κ)] : AS′(crs,τs,·,·,·)(crs) = 1],

where S and S′ are oracles returning ⊥ if KeyCheck(crs, pk, sk) = 0 or the result of Sign(crs, sk,m)
and SimSign(crs, τs, pk,m), respectively, otherwise.

Now, we are ready to detail the security properties simulation unforgeability and simulation
context hiding from [CKLM14]. The intuition is as follows. In case of simulation unforgeability,
the adversary should be unable to output a signature σ∗ on some m∗ = T (~m) without knowing
T and appropriate message-signature pairs (~m,~σ), which is covered by extractability. In case
of context-hiding, the idea is (as already mentioned above) that derived signatures should be
indistinguishable from fresh signatures on the same message—even in front of adversarially
generated keys (cf. [FHS15] for an alternative definition).

The formal definitions are as follows:
8All involved algorithms additionally take crs as input.
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Definition 39 (Simulation Unforgeability). A simulatable signature scheme (Gen,KeyGen, Sign,
Verify,SigEval) being malleable with respect to a set of transformations T and having a simula-
tor/extractor (SimExtGen,SimSign, SigExt), is simulation unforgeable, if for every PPT adver-
sary A there is a negligible function ε(·) such that

Pr


(crs, τs, τe)←R SimExtGen(1κ),
(sk, pk)←R KeyGen(crs), (m∗, σ∗) 6∈ Q ∧
(m∗, σ∗)←R ASimSign(crs,τs,pk,·)(crs, pk, τe) : (~m 6⊆ Qm ∨m∗ 6= T (~m) ∨ T 6∈ T )
(~m, T )← SigExt(crs, pk, τe,m

∗, σ∗,Q)

 ≤ ε(κ),

where Q = Qm ×Qσ is a list for keeping track of queried message-signature pairs.

Definition 40 (Simulation Context-Hiding). A simulatable signature scheme (Gen,KeyGen,Sign,
Verify,SigEval) being malleable with respect to a set of transformations T and having a simu-
lator (SimGen, SimSign), is simulation context-hiding, if for every PPT adversary A there is a
negligible function ε(·) such that

Pr


b←R {0, 1}, (crs, τs)←R SimGen(1κ), (st, pk, ~m,~σ, T )←R A(crs, τs),
Return ⊥ if (T 6∈ T ∨ ∃i : Verify(crs, pk,mi, σi) = 0),
Else if b = 0 : σ←R SimSign(crs, τs, pk, T (~m)), : b = b∗

Else if b = 1 : σ←R SigEval(crs, pk, T, ~m,~σ),
b∗←R A(state, σ)

 ≤ ε(κ).

2.3.2 Constructions

In [CKLM14], the authors give a simple, generic construction of malleable signatures for unary
transformations from cm-NIZKs, which allows the to cover a large class of such transformations.
The idea is to prove knowledge of the signing key and to include the message to-be-signed into
the instance. More formally, the authors use a hard relation Rpk generated by generator G
and a cm-NIZK Π = (CRSSetup,Proof,Verify,ZKEval) that is malleable with respect to class
Tnizk and define a related relation R such that (sk, pk) ∈ Rpk ⇔ (sk, (pk,m)) ∈ R. Then, the
construction of a simulatable signature scheme that is malleable with regard to a class Tsig works
as follows:

Gen(1κ): Return crs←R CRSSetup(1κ).

KeyGen(crs): Compute (pk′, sk′)←R G(1κ) and return (pk, sk)← (pk′, (pk′, sk′)).

Sign(crs, sk,m): Return σ←R Π.Proof(crs, (pk′,m), sk′).

Verify(crs, pk, σ,m): Return Π.Verify(crs, (pk,m), σ).

SigEval(crs, pk, T,m, σ): For T ∈ Tsig, let Tinst(pk,m) = (pk, T (m)) and Twit = id and return
σ′←R Π.ZKEval(crs, (Tinst, Twit), (pk,m), σ) as signature for m′ = T (m).

Not surprisingly, the properties of the cm-NIZK carry over to the above construction:
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Theorem 5 ([CKLM14]). If the cm-NIZK Π is ZK, then the above construction is a simulatable
signature scheme.

Theorem 6 ([CKLM14]). If the cm-NIZK Π is strongly derivation private with respect to Tnizk,
then the above construction is simulation context-hiding with respect to Tsig.

Theorem 7 ([CKLM14]). If the cm-NIZK Π is controlled-malleable simulation-sound extractable
with respect to Tnizk and Rpk is a hard relation, then the above construction is simulation un-
forgeable with respect to Tsig.

2.3.3 Applications

One main application—as outlined in [CKLM14]—is the construction of delegatable anonymous
credentials (DACs). In contrast to conventional anonymous credential systems (ACs), DACs
allow credential owners to delegate their credentials and do not require the credential issuer’s
public key during verification. Even more, DACs protect the identity of every link of the delega-
tion chain and, thereby, make it infeasible to obtain any information about the credential owner.
All in all, this gives stronger privacy guarantees, as the identity of the credential issuer—which
could be some local authority—leaks already important information. As already mentioned
above, malleable signatures for general transformation imply some other general concepts such
as policy-based signatures [BF14] (cf. Section 2.2) as well as delegatable functional signatures
[BMS13] (cf. Section 2.5) and thus also allow all the application of these schemes.

2.4 P -Homomorphic Signatures

The notion of P -homomorphic signatures has been introduced by Ahn et al. [ABC+12, ABC+15]
as a means to formalize various types of signature schemes that allow to publicly compute on
signed data. In a nutshell, for a predicate P their notion allows when given signatures on a
message set M to publicly derive a signature on any message m′ such that P (M,m′) = 1.
Subsequently to their introduction, [ALP12] strengthened the original privacy definition to also
cover unlinkability issues. Deiseroth et al. [DFF+13] extended P -homomorphic signatures such
that it is possible to combine schemes for different predicates into new schemes for logical
formulas over these predicates (statically adjustable) or instead of fixing the predicate for a
scheme to dynamically choose the predicate when singing a message (dynamically adjustable).
We note, that the framework of P -homomorphic signatures has been generalized by malleable
signatures for generic transformation covered in Section 2.3.

2.4.1 Formal Definitions

Before introducing the formal definition we need to fix some notation. Let P : 2M ×M →
{0, 1} be a predicate and let us call a message m′ derivable from M ⊆ M if P (M,m′) = 1.
Furthermore, let P i(M) be the set of messages derivable from P i−1(M) with P 0(M) = {m′ ∈
M | P (M,m′) = 1} and let us denote the set of messages derivable from M through iterated
derivation as P ∗(M) :=

⋃∞
i=0 P

i(M).
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Definition 41 (P -Homomorphic Signatures [ABC+12, ALP12]). A P -homomorphic signature
scheme for a predicate P : 2M×M→ {0, 1} is a triple of algorithms (PH.KeyGen,PH.SignDerive,
PH.Verify) which are defined as follows:

PH.KeyGen(1κ): This algorithm takes a security parameter κ and outputs a key pair (sk, pk)
(where the private key sk is treated as a signature on the empty message λ ∈M).

PH.SignDerive(pk, ({σm}m∈M ,M),m′): This (probabilistic) algorithm takes as input a public key
pk, a set of messages M ⊆M, a corresponding set of signatures {σm}m∈M and a derived
message m′ ∈M. If P (M,m′) = 0 it returns ⊥ and otherwise a derived signature σ′.

We use PH.Sign(sk,m) := PH.SignDerive(pk, (sk, λ),m, ·) to denote that any message can
be derived when the original signature is the signing key.

PH.Verify(pk, σ,m): This deterministic algorithm takes as input a public key pk, a signature σ
and a message m and outputs 1 if the signature is valid and 0 otherwise.

For correctness one requires that for all (sk, pk) ← PH.KeyGen(1κ), for any set M ⊆ M, any
message m′ ∈M such that P (M,m′) = 1 we have that

PH.SignDerive(pk, (PH.Sign(sk,M),M),m′) 6= ⊥ and

PH.Verify(pk,m′,PH.SignDerive(pk,PH.Sign(sk,M),M),m′) = 1.

Before we define the security properties, we have to introduce some oracles and the lists T and
Q to keep track of the oracle queries.

OSign(sk,m): Choose a handle h, run σ ← PH.Sign(sk,m), add (h,m, σ) to T and return h.

OSignDerive(~h,m′): Given ~h = (h1, . . . , hk) and m′, retrieve {(hi,mi, σi)}ki=1 from T and re-
turn ⊥ if one of those do not exist. Otherwise, let M ← (m1, . . . ,mk) and {σm}m∈M =
(σ1, . . . , σk). If P (M,m′) 6= 1 return⊥, else run σ′ ← PH.SignDerive(pk, ({σm}m∈M ,M),m′),
choose a handle h′, store (h′,m′, σ′) to T and return h′.

OReveal(h): If no tuple of the form (h,m′, σ′) exists in T return ⊥. Otherwise return σ′ and add
(m′, σ′) to Q.

Definition 42 (Unforgeability). A P -homomorphic signature scheme is called unforgeable, if
for all PPT adversaries A there is a negligible function ε(·) such that

Pr

[
((sk, pk))← PH.Setup(1κ),O ← {OSign(sk, ·),OSignDerive(·, ·),OReveal(·)},

(m∗, σ∗)← AO(pk) : PH.Verify(pk,m∗, σ∗) = 1 ∧ m∗ /∈ P ∗(MQ)

]
≤ ε(κ) ,

where MQ represents the set of messages M ∈M that is contained within Q.

Now, we are going to present privacy definitions for P -homomorphic signatures. Originally,
[ABC+12] have defined strong context hiding as a replacement to the privacy notion denoted as
weak context hiding in [BF11a] (which has been defined in context of homomorphic signatures
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for polynomial functions and is adapted from [BBD+10]). Later, [ALP12] introduced a stronger
notion denoted as completely context hiding. While these notions require statistical closeness of
distributions, there are also game based security notions, which can be seen as the computational
equivalents to the ones mentioned before. We do not revisit the computational ones and refer
the readers to [ABC+12, ALP12] for these definitions.

Definition 43 (Strong Context Hiding [ABC+12]). A P-homomorphic signature scheme is
strongly context hiding if for all keys (sk, pk)← PH.KeyGen(1κ), for all messages M ⊆M∗ and
m′ ∈M such that P (M,m′) = 1, the following two distributions are statistically close

{(sk, {σm}m∈M ← PH.Sign(sk,M),PH.Sign(sk,m′))}sk,M,m′ ,

{(sk, {σm}m∈M ← PH.Sign(sk,m′),PH.SignDerive(pk, ({σm}m∈M ,M),m′))}sk,M,m′ .

Strong context hiding states that a derived signature on m′ (from an honestly-generated original
signature) is statistically indistinguishable from a fresh signature on m′. This implies that a
derived signature on m′ is indistinguishable from a signature generated independently of M .
We note that in contrast to strong context hiding, weak context hiding [BF11a] only ensures
privacy when the original signatures remain hidden.

While, however, strong context hiding only considers honestly generated signatures, [ALP12]
explicitly considers also maliciously generated ones (i.e., signatures that pass the verification
algorithm, but may not have been computed honestly) with a notion called complete context
hiding.

Definition 44 (Complete Context Hiding [ALP12]). A P -homomorphic signature scheme is
completely context hiding for predicate P if for all keys (sk, pk) ← PH.KeyGen(1κ), for all
messages M ⊆M∗ and m′ ∈M such that P (M,m′) = 1, for all {σm}m∈M such that
PH.Verify(pk,M, {σm}m∈M ) = 1 the following two distributions are statistically close

{(sk,PH.Sign(sk,M))}sk,M,m′ , {(sk,PH.SignDerive(pk, ({σm}m∈M ,M),m′))}sk,M,m′ .

We note that one can even strengthen this definition further by letting the adversary generate
the keys (as e.g., done in a somewhat related approach [FHS15] or in Section 2.3).

Adjustable P -Homomorphic Signature Schemes. In [DFF+13], Deiseroth et al. studied
to which extent it is possible to adjust predicates in P -homomorphic signatures. Recall, that
the predicate P is fixed for a given scheme. Adjustable here means firstly to statically combine
schemes for fixed predicates into a scheme for more expressive ones. In particular, schemes for
logical combinations (AND, OR, NOT) of single predicates. Secondly, to dynamically decide
which predicate to use when signing a message.

For the static case, [DFF+13] show that the ”naive” canonical approach for AND works, i.e.,
given schemes for predicates P1, . . . , Pn to construct a scheme for predicate

∧n
i=1 Pi that works

component wise. This means that one signs each message with the schemes for predicates
P1, . . . , Pn individually and derives signatures by applying the corresponding algorithms for
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each components. Unfortunately, [DFF+13] prove that such a canonical construction cannot
exist for OR and NOT.

For the dynamic case, [DFF+13] present a generic ”certify-then-sign” construction. Basically,
they use a conventional signature scheme to certify a public key of a P -homomorphic signature
scheme for predicate P and sign the message under the secret key of the P -homomorphic scheme.
In order to achieve context hiding, however, it is important that every time a message is signed
with respect to a specific predicate P , the key pair for the P -homomorphic scheme needs to be
identical, which can for instance be achieved by pseudorandomly generating the key pairs.

2.4.2 Constructions

We are going to see various different signature schemes in Section 4 and Section 5 that can be
modeled or investigated within the framework of P -homomorphic signatures. Consequently, we
will not explicitly present any instantiation here and refer the reader to Section 4 and Section 5.

For the sake of completeness, however, we mention that they can be used to compute on
authenticated data and prominent classes of schemes are linearly homomorphic signatures
[BFKW09, BF11b, Fre12, CFW12, ALP13, LPJY13, WHW13, CMP14], homomorphic sig-
natures for polynomial functions [BF11a, HMO13, CFW14], fully homomorphic signatures
[BFS14, GVW14] as well as quotable/redactable signatures [JMSW02, ABC+12, ABC+15]. Fur-
thermore, the concept of structure-preserving signatures on equivalence classes [HS14, FHS14]
is also related to this framework.

2.4.3 Applications

Like with the constructions, we defer the reader to Section 4 and Section 5 for a comprehensive
discussion.

2.5 Operational Signatures

Operational signature (OS) schemes have been introduced by Backes et al. [BDF+14] as an
even more general concept then all the aforementioned general frameworks9. Namely, [BDF+14]
argue that functional signatures (cf. Section 2.1) as well as policy-based signatures (cf. Sec-
tion 2.2) do not consider that the input (message) may be a set of already signed messages.
Moreover, they argue that P -homomorphic signatures (cf. Section 2.4) and malleable signatures
for general transformations (cf. Section 2.3) do not consider any requirements on the keys in
their predicates and transformations are all under the same key respectively. Consequently,
[BDF+14] aims to bridge the gap between functional keys and malleable signatures.

9Operational signatures (OS) are a further generalization of so called delegatable functional signatures (DFS)
[BMS13] introduced by some of the authors of [BDF+14] before. Due to OS being more general we omit an
explicit description of DFS here.
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2.5.1 Formal Definitions

Before we introduce OS schemes, we require some notational preliminaries. OS are defined
for ensembles P of predicates P (which basically describe the admissible operations). These
n-ary predicates P operate on n pairs (id,m) ∈ ID ×M of key identifiers and messages. A
key identifier id can thereby be viewed as a public handle to a secret skid or public key pkid.
More precisely, from the n pairs, one considers the first n− 2 pairs (idin,i,min,i)

n−2
i=1 as the input

pairs and the last two pairs (ideval,meval) and (idout,mout) as the evaluation and the output
pair respectively. This entire sequence is abbreviated as (id,m). We note that OS schemes
are defined in a way that they cover message authentication codes (MACs) as well as signature
schemes. However, we only consider signatures, i.e., the public key setting, and will not consider
MACs, i.e., the secret key setting, subsequently.

Now, informally, such a predicate P upon input (id,m) should return 1 if one holds signatures
(authenticators) for each min,i which verify under the cryptographic keys under handles idin,i
and if one evaluates these messages under key ideval to meval, then one derives a signature (au-
thenticator) for mout, which verifies under the key to handle idout. We stress that the predicate
P only works on key-message pairs (m, id) and not on signatures. The actual transformation of
the signatures will be carried out by the OS.Eval algorithm which in addition takes signatures
σin,i as well as a pair (keval,meval) instead of (ideval,meval), i.e., the handle to the eval key is
replaced by the actual key keval. The sequence ((idin,i,min,i, σin,i)

n−2
i=1 , (keval,meval), (idout,mout))

which is input to the OS.Eval algorithm is abbreviated as (id[keval → ideval],m, σ).

Definition 45 (Operational Signatures [BDF+14]). An operational signature (OS) scheme for
predicates P consists of four PPT algorithms (OS.Setup,OS.KeyGen,OS.Eval,OS.Verify) which
are defined as follows:

• OS.Setup(1κ) : This setup algorithm takes a security parameter κ and outputs a master
secret key msk and some public parameters pp (where it is assumed that pp is an implicit
input to all other algorithms).

• OS.KeyGen(msk, id) : This probabilistic key generation algorithm takes as input a master
secret key msk and some id ∈ ID and outputs a key kid.

• OS.Eval((id[keval → ideval],m, σ), P ) : This (probabilistic) signature algorithm takes as
input a sequence (id[keval → ideval],m, σ) consisting of triples (idin,i,min,i, σin,i)

n−2
i=1 , the

cryptographic key keval for evaluating message meval, the pair of target values (idout,mout),
and (the description of) a predicate P . The algorithm outputs a signature σ in a set S or
a special symbol ⊥ 6∈ S.

• OS.Verify(kout,mout, σ) : This (deterministic) verification algorithm takes an operational
key kout, a message mout ∈M and a signature σ and outputs 1 if the signature is valid or
0 otherwise.

For correctness of an OS for predicates P one requires that for any P ∈ Pκ, all message tuples
m = (min,1, . . . ,min,n−2,meval,mout) ∈Mn

κ, all key handles id = (idin,1, . . . , idin,n−2, ideval, idout) ∈
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IDnκ and all signatures σ = (σ1, . . . , σn−2) ∈ Sn−2
κ where n ≥ 2 is the arity of P , one has

Pr

 OS.Verify(kout,mout, σout) =
P (m, id)

∣∣∣∣∣∣∣∣
(msk, pp)← OS.Setup(1κ),
(kid)id∈id ← OS.KeyGen(msk, id)id∈id,
σout ← OS.Eval((id[keval → ideval],m, σ), P )
∀i ∈ [n− 2] : OS.Verify(kin,i,min,i, σin,i) = 1

 ≤ 1− ε(κ) ,

where ε(·) is a negligible function and the probability is taken over the coin tosses of OS.Setup,
OS.KeyGen and OS.Eval.

Furthermore, as within conventional signature schemes one requires unforgeability under adap-
tive chosen message attacks and the additional privacy property (the latter is basically an
adapted notion of context hiding from [ALP12, ALP13, DFF+13] in context of P -homomorphic
signatures (cf. Section 2.4)).

In order to state these security notions, we need to define some oracles and introduce two lists
QID and QE . We note again that as we are only considering signatures but no MACs. Thus,
in contrast to the notion in [BDF+14], we do neither require a Verify′ oracle (as verification is
always public) nor the notions of weak- as well as outsider-privacy (but only privacy).

OKeyGen′(msk, id) takes a master secret key and an identifier id. It adds id to QID and returns
OS.KeyGen(msk, id).

OEval′(pp, (id,m, σ), P ) adds (id,m, σ) to QE and returns OS.Eval(pp, (id[keval → ideval],m, σ),
P ).

OChb((id0,m0, σ0), (id1,m1, σ1), P0, P1) works as follows:

• if P0(id0,n0) = 0 or P1(id1,n1) = 0 return ⊥;

• if (k0out,m
0
out) 6= (k1out,m

1
out) return ⊥;

compute σ0
eval ← Eval′(pp, (id0,m0, σ0), P0) and σ1

eval ← Eval′(pp, (id1,m1, σ1), P1). If
σ0
eval = ⊥ or σ1

eval = ⊥ return ⊥. Else return σbeval.

Before presenting the security games, we need two additional concepts. Firstly, we need to
discuss when a predicate is called well-formed. Therefore, we consider the basic signature
predicate Psig where we let ID = {idsig, idpub} with idsig ∈ ID \ IDpub being the secret signing
key and idpub ∈ IDpub being the public verification key. The predicate Psig for a simple signature
functionality is

Psig(id,m) =

{
1 if ideval = idsig ∈ ID, idout = idpub ∈ ID,meval = mout ∈M
0 otherwise.

Now, a predicate ensemble P is called well-formed if Psig ∈ P.

Moreover, we need to define what trivial identifier-message pairs are. Basically, the set Triv(QID,
QE) ⊆ ID ×M is the following set:
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Case 1 (Base Case): for any (id,m, P ) ∈ QE we have (idout,mout) ∈ Triv(QID,QE).

Case 2 (Recursion): if (idin,i,min,i) ∈ Triv(QID,QE) for each i, and ideval ∈ QID, then also
any (idout,mout) for which there is some P ∈ P and some meval such that P (id,m) = 1,
is in Triv(QID,QE).

Definition 46 (Unforgeability). An OS scheme for predicates P over IDpub, ID, M is un-
forgeable (EUF-CMA secure), if for any (efficient) algorithm A there is a negligible function
ε(·) such that

Pr

 QE ← ∅,QID ← IDpub,O ← {OKeyGen′(msk, ·),OEval′(·, ·, ·)},
(id∗,m∗, σ∗)← AO(pp) : (pp, id∗,m∗, σ) ∈ QE ∧

Verify(kid∗ ,m
∗, σ∗) = 1 ∧ (id∗,m∗) 6∈ Triv(QID,QE)

 ≤ ε(κ) ,

where the last condition, i.e., (id∗,m∗) 6∈ Triv(QID,QE)) needs to hold at the point in time
when the Verify query has been made by A.

Definition 47 (Privacy). An OS scheme for well-formed predicates P over IDpub ⊆ ID, M
is private, if for any (efficient) algorithm A there is a negligible function ε(·) such that

Pr

[
QID ← ∅, b←R {0, 1}, (msk, pp)← OS.Setup(1κ),

O ← {OKeyGen(msk, ·),OChb(·, ·, ·, ·)}, b∗ ← AO(pp) : b∗ = b

]
− 1

2
≤ ε(κ) ,

2.5.2 Constructions

Let (DKeyGen, DSign,DVerify) be a digital signature scheme, iO be an indistinguishability
obfuscator and H a hash function.

OS.Setup(1κ): Run (sk, pk) ← DKeyGen(1κ), generate an obfuscation c ← iO(CH,sk,pk) of the
circuit CH,sk,pk (cf. Figure 2). Set pp← (c, pk) and the master key as msk← (sk, pp).

OS.KeyGen(msk, id): On input a master secret msk = (sk, pp) and an identifier id ∈ ID, this
algorithm returns the pair (id, σid), where σid ← DSign(id, sk).

OS.Eval((id[keval → ideval],m, σ), P ): On input pp = (c, pk), a tuple (id[keval → ideval],m, σ)
consisting of triples ((idin,i,min,i, σin,i)

n−2
i=1 , the cryptographic key keval = (pk, ideval, σeval)

for evaluating message meval, the pair of target values (idout,mout), and a predicate P ,
compute first the digest h ← H((id[keval → ideval],m, σ), P ) and then the signature
σ ← c(((id[keval → ideval],m, σ), P ), h).

OS.Verify(kid,m, σ): On input a key kid = (pp, id, σid), where pp = (c, pk) a message m and a
signature σ, return DVerify(pk,m‖id, σ).

Theorem 8 ([BDF+14]). Let (DKeyGen, DSign,DVerify) be an unforgeable and deterministic
signature scheme, iO be a random-oracle based indistinguishability obfuscator for a class of
upstream hashing-only circuits C containing CH,sk,pk,C and Cfake (cf. Figure 2 in [BDF+14]),
PRF is a pseudorandom function and H be a hash function modeled as a random oracle. Then
the above construction is an unforgeable and private OS scheme for all predicates P of fixed
polynomial size such that every P ∈ P is efficiently computable.
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CH,sk,pk,P(((id[keval → ideval],m, σ), P ), h) :

If h = H((id[keval → ideval],m, σ), P )
∧ ∀i : DVerify(pk,min,i‖idin,i, σi) = 1
∧ DVerify(pk, keval, σeval) = 1
∧ P (id,m) = 1
output σout ← DSign(sk,mout‖idout)

else
output ⊥

Figure 2: Obfuscated circuit CH,sk,pk,P

2.5.3 Applications

Since operational signatures are the most generic framework that covers numerous other frame-
works such as P -homomorphic signatures, functional signatures as well as policy-based signa-
tures and different types of signatures such as sanitizable signatures, redactable signatures, ring
signatures, fully homomorphic signatures, we do not explicitly discuss any applications here.
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3 Functional Signatures

In this section we provide an overview of signature schemes that allow to delegate signature
generation to other parties for a class of messages meeting certain conditions. We emphasize
that we call all of them functional signatures and this must not be confused with the framework
of functional digital signatures discussed in Section 2.1. Unfortunaltely, the framework has a
very generic name but not all signatures that fall under functional signatures can be covered
by this framework (for instance, attribute-based signatures do not straightforwardly fit to this
framework and proxy signatures have interactive delegation). Consequently, when we speak
of functional signatures we mean what we consider as this class of signatures and not the
framework.

3.1 Proxy Signatures

Proxy signatures (PS), firstly introduced in [MUO96], allow a party A to delegate its signing
rights to some party B such that B can issue signatures on behalf of A. In this context, virtually
all existing schemes implement the so called delegation by certificate approach. Here, A issues
a certificate containing the description of the “allowed” message spaceM for B and B’s public
key. B then issues signatures with respect to this certificate.10 Verification is performed by
verifying the signatures of B, the certificate and whether the signed message is in line withM.

3.1.1 Formal Definitions

While none of the early proxy signature schemes provides a formal security model, a security
model was introduced in [BPW12]. This model is considered to be the standard model for PS
and is based upon standard digital signature schemes. However, some instantiations [BPW12,
MOY04] also make use of aggregate signature schemes [LMRS04] to reduce the size of the
signature. Subsequently, we recall the model of [BPW12].11

(D(M, pki, ski, j, pkj),P(pkj , skj , pki)): The originator and the proxy jointly compute a delega-
tion for the message space M as well as a proxy signing key skp. The originator runs
D and outputs the delegation σ computed using its signing key ski, whereas the proxy
verifies the delegation and obtains the proxy signing key skp, which consists of its private
signing key skj and the originators delegation.

PS(skp,M): This algorithm computes and outputs a proxy signature σP for message M ∈ M
using the proxy signing key skp.

PV(pki,M, σP ): This algorithm verifies whether proxy signature σP is a valid proxy signature
for message M under pkj , delegated by pki. On success, this algorithm outputs 1, and 0
otherwise.

10This description of the message space can be seen as the delegated function f .
11Note that we use a more compact representation of the model, which we adapt from [DHS14].
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ID(σP ): This algorithm outputs the identity j of the proxy, when given a proxy signature σP .

Definition 48 (Unforgeability). For all PPT adversaries A there exists a negligible function ε
such that

Pr


(sk1, pk1)← DKeyGen(κ), ((M,σ), (M,σp, pki))← AOR,OD,OE ,OS ,OPS (pk1) :

(DVerify(σ,M, pk1) = 1 ∧M /∈ QS) ∨
(PV(pki,M, σP ) = 1 ∧ i 6= 1 ∧ ID(σP ) = 1 ∧ M /∈ QPS) ∨
(PV(pki,M, σP ) = 1 ∧ i = 1 ∧ ID(σP ) = 1 ∧ M /∈ QPS) ∨

(PV(pki,M, σP ) = 1 ∧ i = 1 ∧ ∀MID(σP ) : M /∈MID(σP ))

 ≤ ε(κ)

where the adversary has access to an oracle OR to register public keys for users, to OD for the
designation of signing rights for message spaces M, to OE which exposes the `-th proxy signing
key produced during self-delegation (user 1 to user 1), to OS to obtain standard signatures from
user 1 and to a proxy sign oracle OPS for proxy signatures by user 1. Furthermore, QS and
QPS are the lists of queried standard and proxy signatures, respectively. With σ we denote a
standard signature.

3.1.2 Instantiations

Since the introduction of PS a wide variety of PS schemes was proposed. We subsequently dis-
cuss the most relevant schemes in our context [SMP08, HS13b, BPW12, FP08]. Those schemes
mostly differ in the way the description of the designated message space is encoded, and, thus,
the size of the signatures and the computational costs for verification. State-of-the-art encodings
include enumerating all allowed messages [SMP08], vector commitments with selective open-
ings [HS13b], descriptions of deterministic PT Turing machines [BPW12], or simply abstract
descriptions of the designated message space. In addition, [HS13b] also mentioned context-free
grammars and regular expressions as possible encodings.

Besides the differences mentioned above, [BPW12, SMP08] employ aggregate signatures to
reduce the size of proxy signatures. Table 1 compares the schemes mentioned above regarding
their computational efficiency and signature size.

Scheme Max. n |D| |PS| |PV| |σ|
DSS [BPW12] 1 O(|TM |) O(1) O(T (TM(·))) O(|TM |)
AGG [BPW12] 1 O(|TM |) O(1) O(T (TM(·))) O(|TM |)

[SMP08] - O(|M|) O(1) O(max {n, |M|}) O(max {n, |M|})
PC [HS13b] 1 O(|M|) O(|M|) O(1) O(1)

MT [HS13b] 1 O(|M|) O(|M|) O(log |M|) O(log |M|)

Table 1: Comparison of PS schemes. Here, n denotes the maximum number of consecutive
delegations, |σ| denotes the signature size, |D|, |PS|, |PV| denote the computational complexity
of the respective algorithm, DSS denotes a digital signature scheme, AGG denotes an aggregate
signature scheme, PC denotes a polynomial commitment scheme, MT denotes a Merkle-tree-
based vector commitment, |TM | denotes the size of the description of the deterministic PT
Turing machine, T (TM(·)) denotes the maximum number of steps TM takes to verify whether
an arbitrary message m is an “allowed” message and |M| denotes the size of the message space.
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3.1.3 Extensions

Subsequently, we discuss some extensions to the above presented model of proxy signatures.

Privacy in the Context of PS. Besides the variations in the expressiveness of the used
encoding, an appropriate encoding may also deliver useful additional security properties [HS13b],
i.e., privacy. This notion prevents the verifier from learning the whole designated messages space
upon verification of a proxy signature on a single message. Subsequently, we recall this notion
(adopted from [DHS14]):

Definition 49 (Privacy). For all PPT adversaries A there exists a negligible function ε such
that

Pr

(sk1, pk1)← DKeyGen(κ), ((i, c), state)← AOR,OD,OE ,OS ,OPS (pk1),
skp∗ = (D(Mr, pk1, sk1, i, pki),P(pki, ski, pk1))
M∗ ← AOR,OD,OE ,OS ,OPS ,OPS′ (state) :M∗ =Mr

 ≤ 1

|M′|
+ ε(κ)

where the adversary has access to the same oracles as in the unforgeability game in the first
phase. The adversary then outputs c > 1 and i, a random warrant Mr of size c + 1 is chosen
from a message space M and a delegation of user i computed. Then, in the second phase the
adversary has access to the same oracles as in phase 1 and an additional oracle OPS′ to obtain
proxy signatures w.r.t. skp∗ for randomly chosen messages from Mr at most c times. Note,
that the adversary has no direct access to skp∗ and thus is not aware of Mr. The goal of
the adversary is to guess the warrant Mr with negligible probability away from 1

|M′| where M′
represents the space of all potential messages M minus all message queried to OPS′.

This property can be reached by using a hiding vector commitment with selective openings to
commit to the messages in the message space [HS13b]. In [HS13b], two instantiations based
on polynomial commitments [KZG10] and randomized Merkle hash trees, respectively, are pro-
vided. Using the former approach, one obtains constant size signatures as well as constant
verification costs, whereas one obtains signature sizes and verification costs logarithmic in the
size of the message space when using the latter approach.

Hierarchical Proxy Signatures. [MOY04] extends the model of PS to hierarchical PS, that
allow to model chains of delegation. Based on this model, they show the equality of hierarchical
PS to key-insulated signatures [DKXY03]. In their paper, they also unveiled an issue regarding
self-delegation in the original model. However, this issue was fixed in the extended version of
[BPW12] and the fix is also included in the model presented above.

A Stronger Security Model. In [SMP08], the model of PS was extended to provide stronger
security guarantees (security in their model implies security in the model of [BPW12]). In
particular, they remove the requirement that proxy signing keys need to be registered via
OR. Additionally, they emphasize the importance of an explicit description of the semantic
of the warrant, as otherwise this could be exploited to obtain a certain degree of malleability.
Furthermore, they also consider hierarchical PS and provide a hierarchical PS instantiation
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in their strengthened model. This instantiation is based on sequential aggregate signatures
[LMRS04]. Essentially, their approach is to “concatenate” the signed messages as well as the
designation certificates by means of a sequential aggregate signature. The signature size in
their construction is linear in the maximum of the number of delegations and the number of
intermediate delegatees, respectively.

Anonymous Proxy Signatures. Anonymous proxy signatures [FP08] aim at hiding the
identity of all intermediate delegatees in a proxy signature. To this end, the identification
algorithm can no longer be publicly executed, but there is a dedicated opening authority (similar
to the opening authority in group signatures) that can open signatures, and, therefore, identify
delegatees. This additionally imposes the requirements of traceability, i.e., every valid signature
can be correctly opened, and non-frameability, i.e., no user can be falsely accused of being a
delegator/signer. Their scheme is based on a digital signature scheme, a public-key encryption
scheme and a simulation-sound NIZK proof system for an NP-language. A proxy signature
consists of an encryption of a conventional proxy signature together with a non-interactive
proof for the validity of the encrypted statement.

3.2 Blank Digital Signatures

Blank Digital Signatures (BDS) [HS13a] are somewhat similar to PS, but allow for a more
expressive definition of the message space. That is, an originator can delegate the signing
rights for templates12 containing fixed and exchangeable (multiple-choice) elements to a proxy.
The proxy can then choose one of the predefined messages per exchangeable element and issue
a signature on such an instantiation on behalf of the originator.

3.2.1 Formal Definitions

Formally, BDS are defined as follows13 :

KeyGen(κ, t): On input of a security parameter κ and an upper bound for the template size t
the public parameters pp are generated. We assume pp to be an input to all subsequent
algorithms.

Sign(T , dskO, dpkP): Given a template T , the secret signing key of the originator dskO and the
public verification key of the proxy dpkP, this algorithm outputs a template signature σT
and a secret template signing key for the proxy skTP .

VerifyT(T , σT , dpkO, dpkP, skTP ): Given a template T , a template signature σT , the public ver-
ification keys of originator and proxy (dpkO, dpkP) and the template signing key of the
proxy skTP , this algorithm checks whether σT is a valid signature for T and returns 1 on
success and 0 otherwise.

12One can think of templates as forms containing fixed and multiple choice fields.
13Again, we use a more compact representation of the model, which we adapt from [DHS14].
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Inst(T , σT ,M, dskP, skTP ): On input a template T with corresponding signature σT , an instance
M � T , as well as the secret template signing key skTP and the secret signing key of the
proxy dskP, this algorithm outputs a signature σM for M.

VerifyM(M, σM, dpkO, dpkP): Given an instance M, an instance signature σM and the public
verification keys of originator and proxy (dpkO, dpkP), this algorithm verifies whether σM
is a valid signature on M and M � T (for an unknown T ). On success, this algorithm
outputs 1 and 0 otherwise.

For security, BDS are required to be correct, unforgeable, immutable and private.

Definition 50 (Unforgeability). For all PPT adversaries A there exists a negligible function ε
such that

Pr


pp← KeyGen(κ, t), (dskO, dpkO)← DKeyGen(κ), (dskP, dpkP)← DKeyGen(κ),

((T ∗, σT ∗ , skT
∗

P ), (M∗, σM∗))← AOT ,OM(pp, dpkO, dpkP) :
(VerifyT(T ∗, σT ∗ , dpkO, skT

∗
P , dpkP) = 1 ∧ T ∗ /∈ QT ) ∨

(VerifyM(M∗, σM∗ , dpkP, dpkO) = 1 ∧ M∗ /∈ QM∗)

 ≤ ε(κ),

where QT is the list of queried templates and QM∗ is the list of queried instances for template
T ∗. The adversary A has access to a template signing oracle OT issuing templates signatures
for templates of its choice and an instance signing oracle OM issuing instance signatures for
previously queried templates Ti.

Definition 51 (Immutability). For all PPT adversaries A there exists a negligible function ε
such that

Pr


pp← KeyGen(κ, t), (dskO, dpkO)← DKeyGen(κ), (dskP, dpkP)← DKeyGen(κ),

((T ∗, σT ∗ , skT
∗

P ), (M∗, σM∗))← AOT (pp, dpkO, dpkP, dskP) :
(VerifyT(T ∗, σT ∗ , dpkO, skT

∗
P , dpkP) = 1 ∧ T ∗ /∈ QT ) ∨

(VerifyM(M∗, σM∗ , dpkP, dpkO) = 1 ∧ M∗ 6� T ∗)

 ≤ ε(κ),

where QT is the list of queried templates. The adversary A has access to a template signing
oracle OT issuing templates signatures for templates of its choice and returning the respective
template secret keys as well as an instance signing oracle OM issuing instance signatures for
previously queried templates Ti.

Definition 52 (Privacy). For all PPT adversaries A there exists a negligible function ε such
that

Pr

pp← KeyGen(κ, t), (dskO, dpkO)← DKeyGen(κ), (dskP, dpkP)← DKeyGen(κ),
(T0, T1, state)← AOT ,OM(pp, dpkO, dpkP),

(Tb, σTb′ )← A
OT ,OM,OM′ (state, σT0 , σT1) : b = b′

 ≤ 1

2
+ ε(κ),

where the adversary in the first phase has access to OT and OM as in the unforgeability def-
inition and ends this phase by outputting two templates which allow instantiation of k > 1
equal messages. Then in the second phase the adversary gets the two templates signatures in
a randomly permuted order, has access to OT and OM as in phase 1 (excluding T0 and T1)
and can additionally query a modified instantiation oracle OM′ at most k times for instances
M� T0, T1 and obtains the output of Inst for both templates in a randomly permuted order.
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3.2.2 Instantiations

There are two known instantiations of BDS, i.e., [HS13a] and [DHS14]. The former uses EUF-
CMA digital signatures and a variation of the polynomial commitments in [KZG10] to encode
templates and messages, and, thus, reaches succinct signatures. The latter is a black-box
construction of BDS from non-interactive attibute- based anonymous credentials.

3.3 Policy-Based Signatures

As already mentioned in Section 2.2, [BF14] also provide an efficient instantiation of a PBS
scheme. It basically follows the generic construction presented in Section 2.2, but does not
require the encryption scheme, because the used GS proofs directly allows to extract the wit-
nesses. This means that the encrypted witnesses are not required for the extraction in the
simulator. Due to the similarity to the generic construction, however, we do not restate the
instantiation here and refer the reader to [BF14] for more details.

3.4 Attribute-Based Signatures

Attribute-based signatures (ABS) [MPR08, MPR11] allow users who are issued signing keys for
attributes by authorities to produce signatures for any message ”tagged” with a predicate that
is satisfied by the user’s attributes. Thereby, those predicates can be chosen by the user in an
ad-hoc fashion and signatures do not reveal anything beyond that the predicate is satisfied, i.e.,
a signature does not leak which attributes have been used to satisfy the predicate. Consequently,
the verification of a signature only tells that the signer who has produced the signature has a
signing key to attributes that satisfy the predicate but neither reveals the signers identity nor
the set of attributes for which the signing key has been issued.

3.4.1 Formal Definitions

First, we define monotone span programs and note that every linear secret sharing scheme can
be derived from a monotone span program computing its access structure [KW93]. We call `
the length and t the width of the span program and `+ t the size of the span program.

Definition 53 (Monotone Span Program [MPR11]). Let Υ : {0, 1}n → {0, 1} be a monotone
boolean function. A monotone span program for Υ over a field F is an ` × t matrix M with
entries in F, along with a labeling function a : [`]→ [n] that associates each row in M with an
input variable of Υ, that, for every (x1, . . . , xn) ∈ {0, 1}n, satisfies the following:

Υ(x1, . . . , xn) = 1⇐⇒ ∃~v ∈ F1×` : ~vM = [1, 0, 0, . . . , 0] and (∀i : xa(i) = 0⇒ vi = 0)

Intuitively, Υ(x1, . . . , xn) = 1 if and only if the rows of M indexed by {i | xa(i) = 1} span the
vector [1, 0, 0, . . . , 0].
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In the following let A be the universe of all attributes and let us define a claim predicate over A
to be a monotone boolean function whose inputs are associated with attributes in A. One says
that a set of attributes A′ ⊆ A satisfies a claim predicate Υ if we have that Υ(A′) = 1.

The important parties involved in ABS are a signature trustee (TI), who is responsible for the
setup (of common parameters used by all parties, i.e., a common reference string), an attribute-
issuing authority (AIA), who issues signing keys to a set of signers, as well as a set of signers
and verifiers.

Definition 54 (Attribute-Based Signatures [MPR11]). An attribute-based signature (ABS)
scheme is parametrized by a universe of possible attributes A and message spaceM and consists
of the following algorithms:

ABS.TSetup(1κ): On input a security parameter κ generate and output a public reference infor-
mation tpk (this algorithm is run by a signature trustee).

ABS.ASetup(1κ): On input a security parameter κ generate and output a key pair (ask, apk)
(this algorithms is run by an attribute-issuing authority).

ABS.AttrGen(ask,A′): On input ask and A′ ⊆ A output a signing key skA′.

ABS.Sign(pk, skA′ ,m,Υ): On input pk = (tpk, apk), signing key skA′, message m ∈ M and a
claim predicate Υ with Υ(A′) = 1 output a signature σ.

ABS.Verify(pk,m,Υ, σ): On input pk = (tpk, apk), a message m ∈M, a claim predicate Υ and
a signature σ output either 1 or 0.

For correctness one requires that for all tpk← ABS.TSetup(1κ), all purported apk, all messages
m ∈ M, all attribute sets A′ ⊆ A, all signing keys skA′ ← ABS.AttrGen(ask,A′), all claim
predicates Υ such that Υ(A′) = 1 and all signatures σ ← ABS.Sign(pk, skA′ ,m,Υ) we have that
ABS.Verify(pk,m,Υ, σ) = 1.

For unforgeability, we first need to define the oracles available to the adversary.

OABS.AttrGen(ask,A′): This works exactly as the algorithm in Definition 54.

OABS.Sign(ask,m,Υ): This oracle first runs skA′ ← ABS.AttrGen(ask,A′) for any arbitrary A′
that satisfies Υ. Then it outputs the result of ABS.Sign(pk, skA′ ,m,Υ).

Henceforth, let us denote by QSign and QGen the set of tuples queried to the ABS.Sign and
ABS.AttrGen oracles, respectively.

Definition 55 (Unforgeability [MPR11]). An ABS scheme is called unforgeable if for all PPT
adversaries A there exists a negligible function ε(·) such that

Pr

 tsp← ABS.TSetup(1κ), (ask, apk)← ABS.ASetup(1κ),
O ← {OABS.AttrGen(ask, ·),OABS.Sign(ask, ·, ·)}, (m∗,Υ∗, σ∗)← AO(tpk, apk)) :

(m∗,Υ∗) 6∈ QSign ∧ ABS.Verify(pk,m∗,Υ∗, σ∗) = 1 ∧ Υ∗(A′) = 0 ∀A′ ∈ QGen

 ≤ ε(κ) ,
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Definition 56 (Perfect Privacy [MPR11]). An ABS scheme is called perfectly private if for
all honestly generated tpk ← ABS.TSetup(1κ), all purported apk, all attribute sets A1, A2,
all all signing keys skA1 ← ABS.AttrGen(ask,A1) and skA2 ← ABS.AttrGen(ask,A2), all mes-
sages m ∈ M and all claim predicates Υ such that Υ(A1) = Υ(A2) = 1 the distributions
ABS.Sign(pk, skA1 ,m,Υ) and ABS.Sign(pk, skA2 ,m,Υ) are equal.

3.4.2 Instantiations

Generic Framework. Subsequently, we present the generic framework to construct ABS
from [MPR11]. Therefore, we have to introduce so called credential bundles (which can be
trivially constructed from any secure digital signature scheme).

Definition 57 (Credential Bundle [MPR11]). A credential bundle for message spaceM consists
of the following algorithms

CB.Setup(1κ) : On input a security parameter κ generate and output a private public key pair
(sk, pk).

CB.Gen(sk,m1, . . . ,mn) : On input a signing key sk and a set of messages {m1, . . . ,mn} ⊆ M
output a tag τ and values σ1, . . . , σn.

CB.Verify(pk,m, τ, σ) : On input a verification key pk, a message m, tag τ and a value σ output
either 1 or 0.

Correctness for a credential bundle requires, that for all (τ, σ1, . . . , σn)← CB.Gen(sk,m1, . . . ,mn)
we have that CB.Verify(pk,mi, τ, σi) = 1 for all i ∈ [n]. The security of a credential bundle ba-
sically requires that having some bundles, a new bundle can only be obtained from taking a
subset of one existing bundle, i.e., attributes from several bundles cannot be combined. We
refer the reader to [MPR11] for a formal definition of security, which basically is a variant of
EUF-CMA security adopted to the notion of bundles.

Now, we present a generic construction based on a credential bundle and non-interactive witness
indistinguishability (NIWI) proofs (cf. Section 1.3.5).

Theorem 9 ([MPR11]). Given a NIWI argument of knowledge system and any secure credential
bundle scheme (equivalently, any secure digital signature scheme), then the generic construction
presented below is a secure ABS scheme. Furthermore, if the NIWI argument is perfectly hiding,
then the ABS scheme is perfectly private.

Let A be the universe of attributes and Â denote a space of pseudo-attributes such that A∩Â = ∅.
For every message m and claim-predicate Υ one associates a pseudo-attribute am,Υ ∈ Â. In the
following let (CB.Setup,CB.Gen,CB.Verify) as well as (NIWI.Setup,NIWI.Prove,NIWI.Verify) be
a secure credential bundle scheme for message space A∪ Â and NIWI proof system respectively.

ABS.TSetup(1κ): On input a security parameter κ run crs← NIWI.Setup(1κ) as well as (tpk′, tsk)
← CB.Setup(1κ) and publish tpk = (crs, tpk′).
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ABS.ASetup(1κ): On input a security parameter κ run and output (apk, ask)← CB.Setup(1κ).

ABS.AttrGen(ask,A′): On input ask and A′ ⊆ A, check if A′ contains no pseudo-attributes and
output skA′ ← CB.Gen(ask,A′).

ABS.Sign(pk, skA′ ,m,Υ): On input pk = (tpk, apk), signing key skA′ , message m ∈ M and a
claim predicate Υ with Υ(A′) = 1, parse skA′ as (τ, {σa | a ∈ A′}). Define Υ̃ := Υ ∨ am,Υ
where am,Υ ∈ Â is the pseudo-attribute associated with (m,Υ). Thus, one still has
Υ̃(A′) = 1. Let {a1, . . . , an} be the attributes appearing in Υ̃. Let pki be apk if ai
is a pseudo-attribute and tpk otherwise. Finally, let Φ[pk,m,Υ] denote the following
expression:

∃τ, σ1, . . . , σn : Υ̃ ({ai | CB.Verify(pki, ai, τ, σi) = 1}) .

For each i, set σ̂i ← σai from skA′ if it is present and to any arbitrary value otherwise.
Compute π ← NIWI.Prove(crs,Φ[pk,m,Υ], (τ, σ̂1, . . . , σ̂n)) and output π as the signature.

ABS.Verify(pk,m,Υ, π): On input pk = (tpk, apk), a message m ∈ M, a claim predicate Υ and
a proof π output the result of NIWI.Verify(crs,Φ[pk,m,Υ], π).

In [MPR11], the authors instantiate this generic framework with Groth-Sahai proofs as the
NIWI proof system and 1) Boneh-Boyen signatures [BB04, BB08] as well as 2) Waters signatures
[Wat05]. Let s be the size of the MSP, then the approach 1) achieves O(κ ·s) group elements for
a signature and using 2) (which avoids to commit to scalars of Boneh-Boyen signatures bitwise)
achieves O(κ+ s) group elements per signature (but has larger, i.e., O(κ) group elements in the
public key, in contrast to a constant number for Boneh-Boyen signatures).

As the second more efficient approach still yields very large signatures, [MPR11] also presents a
third approach which avoids the use of NIWI proof system and yields signatures of size O(s+2).
In contrast to the two other approaches which require the t-SDH and either the DLIN or SXDH
assumption or only the DLIN or SXDH assumption the latter scheme relies on an interactive
assumption and is directly analyzed in the generic group model.

We note that besides the constructions mentioned above, there are some other constructions
[GNS10, LK10, LAS+10, HLLR12] (for limited classes of policies) in the literature.

Non Pairing-Based Constructions. Although the generic construction that we have pre-
sented before does not rule out constructions without relying on pairings, the only efficient
instantations rely on using Groth-Sahai proofs for the NIWI part and thus are inherently pair-
ing based. Nevertheless, we will briefly discuss recently proposed schemes [Her14, Her15] which
rely on RSA-type and discrete logarithm related assumptions respectively.

The RSA-type construction [Her14] works in the strong-RSA setting and a secret key for a
user actually is a set of texbook RSA signatures on hash values H(ati) of attributes ati under
a randomly chosen per user key. Then, a signature is a non-interactive zero-knowledge proof
of knowledge of an integer e (the per user signature verification key) and at least ` e-th roots
modulo N of the values H(at1), ...,H(atn) (this construction is for threshold policies, i.e., at
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least ` attributes have to be present to be able to produce a signature, but [Her14] also discuss
how to extend this approach to more general policies).

A more recent approach [Her15] constructs ABS based on Schnorr signatures (i.e., non-interactive
honest-verifier zero-knowledge proofs of knowledge of discrete logarithms via Fiat Shamir) in
the discrete logarithm setting. Let us assume we have a group G of prime order q generated
by g. In this construction, there is a bound L on the number of secret keys that are issued in
the system which has to be fixed before the setup and the size of the public parameters linearly
depends on L (which makes the approach not attractive for large user bases). The basic idea
when having N attributes and M = N + L is to choose for all i ∈ [N ], j ∈ [M ] independently
at random secrets xi,j and publish the parameters Yi,j = gxi,j . For a user with attributes S,
one issues a key as follows: Choose random ~a = (a1, . . . , aM )←R (Zq)M and for each attribute

ati in S to compute si =
∑M

j=1 ajxi,j (mod q) (it must be assured that all the ~a are linearly
independent). A signature then basically is a non-interactive honest verifier zero-knowledge
proof of knowledge of a subset S′ ⊆ S of sufficient size (at least the threshold) such that the
user knows aj , si 6= 0 with gsi =

∏N
j=1 Y

aj
i,j .

3.4.3 Extensions

After presenting constructions of ABS, we briefly discuss some extensions of ABS in various
different directions.

Multiple Attribute Authorities. Already in the initial work [MPR11], ABS have been
defined such that it is possible to model different attribute-issuing authorities (but relying on
a single signature trustee). Actually, for the generic framework presented above it is very easy
to have different attribute-issuing authorities.

Later, Okamoto and Takashima [OT13] considered multi-authority attribute-based signatures
which are fully decentralized (DMA-ABS), i.e., there is no longer any trusted central authority
required for the setup (like the signature trustee above). For the sake of completeness we note
that the scheme proposed in [OT13], which is secure in the random oracle model under DLIN,
is (like it is often seen within identity-based cryptography) a signature scheme obtained via
Naor’s transform [BF01] from a decentralized multi-authority functional encryption (DMA-FE)
scheme.

Revoking Anonymity. Recall that ABS do not reveal the identity of the signer but only that
the signer possesses a signing key to some unknown set of attributes that satisfy a policy. There
have been some works into the direction of revoking the anonymity of signers later on. The
most early approach can be found within attribute-based group signatures (ABGS) [Kha07b]
which are an attribute-based version of group signatures (cf. Section 3.5.1) and this revocation
feature is inherent to group signatures. However, in contrast to ABS, the concept of ABGS
does not require to hide the attributes used to satisfy a policy within a signature (and thus do
not satisfy the privacy requirement of ABS).
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[EHM11] explicitly studied revocation in context of ABS. This means that there is an authority
which is able to identify a signer when given a signature and some additional trapdoor informa-
tion. In [EHM11], a standard model construction which provides revocation is proposed and the
RSA-style scheme secure in the random oracle model from [Her14] can also be easily modified
to provide revocation.

Revoking Attributes. One fundamental question in context of ABS is the ability to se-
lectively revoke attributes of users after they have been issued signing keys for certain sets
of attributes (or to label attributes with validity periods). The first such approach has been
studied in context of ABGS [Kha07a]. Here, a revocation table is used to enable the verifiers
to identify (if a signer has been revoked or) if any of his attributes have been revoked before
accepting a signature.

Very recently, revocation has for the first time been extensively studied in context of ABS [TV15]
(the initial work [MPR11] discussed some of these issues in an informal manner). Basically, the
authors extend ABS to support attribute expiration as well as key-update mechanisms that allow
efficient extension of issued attribute sets. They provide three instantiations, where basically
all instantiation are based on the idea to convert a span program Υ that does not take time
into account into a span program Υ′ that includes requirements for a validity interval of all
attributes used to satisfy Υ. More precisely, in the first approach every attribute is assigned a
validity interval that is independent of any other validity interval used by any other attribute
and is quite inefficient. The two other approaches are based on so called validity attributes,
i.e., an attribute that indicates the interval for which the attributes are valid (there may be
different validity attributes for one attribute set). Thereby, the second approach uses one
common validity interval for all attributes in an attribute set and the third approach partitions
the attributes set into subsets, where all attributes in a subset share the same validity interval.

Richer predicates. While nearly all constructions of ABS focus on monotone predicates, re-
cent work considers more general predicates, i.e., an ABS construction supporting non-monotone
access structures in the standard model [OT14] and [OT13] propose a generalization (denoted
DMA functional signatures) which support non-monotone access structures combined with
inner-product relations.

3.5 Related Concepts

Finally, in this section we want to mention some concepts that are somewhat related to func-
tional signatures.

3.5.1 Group Signatures

Group signatures [CvH91, ACJT00, BBS04] allow a group manager to create a group, and every
member of this group can then anonymously create signatures on behalf of the group. The
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signing capabilities are, thereby, delegated by issuing per-user-specific keys. We observe that
this concept is somewhat related to PS, since one could interpret this process as some kind of key-
based delegation (also recall the similarity of the additional properties introduced for anonymous
proxy signatures [FP08], i.e., traceability and non-frameability, which are security properties of
early group signatures which have later been condensed in fewer properties [BMW03, BSZ05]).

3.5.2 Traceable Signatures & Co

For the sake of completeness, we also mention traceable signatures [KTY04, Cho09, ACHO11].
They can be seen as an extension of group signatures which additionally feature a more privacy
friendly tracing mechanisms (instead of the opening known from group signatures). That is,
1) the group manager can provide so called tracing trapdoors that allow to trace all signatures
of a particular user, while all other signers still remain anonymous, and 2) users can prove
authorship of a certain signature.

Below, we also want to mention some other privacy enhancing variants of group signatures. In
group signatures with message dependent opening [SEH+12, OSEH13], the opening authority
cannot open a signature unless an additional authority (the so called admitter) admits to open
signatures for specified messages. Thus, this restricts the power of the opening authority. Public
linking of group signatures of users without identifying them has been investigated in [NFW99].
Public tracing of signers who have produced a number of signatures above a certain threshold
has been studied in [Wei05]. There are also approaches where the linkability of signatures is
only possible for a specified time frame (by fixing the randomness for a certain time) [MCVH12].
Another direction is to put the user in charge of controlling which signatures can be linked (con-
trolled linkability), as it is used in direct anonymous attestation (DAA) [BCC04] and related
schemes [BFG+13]. Finally, there are approaches which support so called controllable linkabil-
ity [HLhC+11, HLC+13, SSU14]. Here, a dedicated entity, the so-called linking authority, can
determine whether two given signatures stem from the same unknown signer.
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4 Malleable Signatures For Arithmetics

In this section we review malleable signature schemes for arithmetics and in particular linearly
homomorphic signatures, homomorphic signatures for polynomial functions, fully homomorphic
signatures as well as homomorphic aggregate signatures. Large parts of this section also appear
(verbatim) in a recent survey eprint paper [TDB15].

4.1 From Digital to Homomorphic Signature Schemes

Foremost, we need to clarify what we mean by a homomorphic signature scheme. As we are going
to use a different notation as the one introduced in Section 1.3.3, we first provide an alternative
definition for digital signature schemes. Afterwards, we present definitions for homomorphic
signatures.

4.1.1 Digital Signatures

A digital signature scheme is defined over the following sets [GMR88]: the messages space M,
the signature space Y, the set of private keys K and the set of public keys K′.
Definition 58 (Digital Signatures [MVOV96]). A digital signature scheme is a tuple of the
following probabilistic, polynomial-time algorithms:

• Set(1λ). It takes as input a security parameter λ in unary. It outputs a secret key k and
the respective public key k′. The public key determines the space of messages M and the
space of signatures Y.

• Sig(k,m). It takes as input a secret key k and a message m ∈ M. It outputs a signature
σ ∈ Y, which is the signature for the message m signed by means of the secret key k.

• Vrf(k′,m, σ). It takes as input a public key k′, a message m ∈M and a signature σ ∈ Y.
It outputs “ ok” if σ is a valid signature of the message m under the secret key k. It
outputs “ bad” otherwise.

The verification is a fundamental step to check the authenticity of the signature. Specifically,
if k′ is the corresponding public key of the secret one k, then

∀m ∈M, Vrf (k′,m,Sig(k,m)) = ok.

The verification is a public procedure. Indeed, anyone, using the public key, can verify that the
signature correctly belongs to the person who holds the private key.

Definition 59. A digital signature scheme is correct if, for any signature σ produced by Sig
on message m ∈M and private key k, then Vrf(k′,m,Sig(k,m)) = ok.

For the definition of security against adaptive adversaries, i.e., the standard EUF-CMA security
notion for digital signature schemes, we refer the reader to Section 1.3.3.
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4.1.2 Homomorphic Signatures

The work by Johnson et al. (see [JMSW02]) is the first one which provides a rigorous definition of
what a homomorphic signature is. The specifications needed to define a homomorphic signature
scheme are the same as for the digital counterpart: the message space M equipped with an
operation, the space of signatures Y (which in this case is also equipped with an operation) and
the space for the secret (K) and the public (K′) keys respectively. Of course, the setup, the
signing, and the verifying algorithms are still absolutely necessary. In the following we propose
the original definition of [JMSW02].

Definition 60. Assume we have a signature algorithm Sig and a verification algorithm Vrf,
together with a binary operation “·”. Then we say that Sig is a homomorphic signature with
respect to · if it comes with an efficient family of binary operations ∗k′ : Y × Y → Y such that,
having the messages m,m′ ∈M and the signatures y, y′ ∈ Y for which

Vrf(k′,m, y) = ok = Vrf(k′,m′, y′)

for a public key k′ ∈ K′, then there is a secret key k ∈ K such that

y∗k′y′ = Sig(k,m ·m′) and Vrf(k′,m ·m′, y∗k′y′) = ok.

With respect to the framework for digital signatures presented in Section 4.1.1, for homomorphic
signatures there are some new elements to take into account:

• the set F of admissible functions: this set defines which are the possible computations
over the signed data that the homomorphic signature scheme can support. An element of
F is a function f :MN →M.

• the integer N : this value gives the maximum data size, i.e. the maximum number of mes-
sages that the admissible function can operate on. Indeed it corresponds to the dimension
of the message space where those admissible functions are defined.

• the index i: this index doesn’t have an intrinsic meaning for the homomorphic scheme. It is
just a practical tool to keep track of which of the message of the dataset (m1,m2, . . . ,mN ) ∈
M we are working on.

• the tag τ : this element is necessary to define a strong notion of security also for homo-
morphic signatures.

A fourth new algorithm is also introduced to the ones already present for common digital
signature schemes. That is the algorithm Eval : K′ × {0, 1}λ ×F × YN → Y, which is the core
part of a homomorphic signature scheme. Indeed it lets anybody compute on authenticated
data, i.e., translating functions on messages into functions on signatures. In the following we
denote those signatures to the messages m1,m2, . . . ,mN with σ1, σ2, . . . , σN . Furthermore, we
will denote the tuple (σ1, σ2, . . . , σN ) with ~σ.
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Note that the other three algorithms now behave slightly different because of the new parameters
they have in the input. Modeling on the operative definition for digital signatures and taking
into account such differences, we describe the corresponding homomorphic signatures as follows
[Fre12].

Definition 61. A homomorphic signature scheme is a tuple of the following PPT algorithms:

• Set (1λ, N). It takes as input a security parameter λ in unary and an integer N . It
outputs a secret key k and the respective public key k′. The public key determines the
space of messages M, the space of signatures Y, and the set F of admissible functions
f :MN →M.

• Sig (k, τ,m, i). It takes as input a secret key k, a tag τ ∈ {0, 1}λ, a message m ∈M, and
an index i ∈ {1, 2, . . . , N}. It outputs a signature σ ∈ Y, computed using the secret key k,
which is the signature for the i-th message m of the dataset tagged by τ .

• Vrf (k′, τ,m, σ, f). It takes as input a public key k′, a tag τ ∈ {0, 1}λ, a message m ∈M,
a signature σ ∈ Y, and a function f ∈ F . It outputs “ ok” if σ is a valid signature for the
message m, output of the function f over the dataset tagged by τ , under the public key k′.
It outputs “ bad” otherwise.

• Eval (k′, τ, f, ~σ). It takes as input a public key k′, a tag τ ∈ {0, 1}λ, a function f ∈ F and
a tuple of signatures ~σ ∈ YN . It outputs a signature σ′ ∈ Y for a function f ∈ F over the
(tuple of) signatures ~σ ∈ YN , labeled by tag τ ∈ {0, 1}λ.

The definition of correctness is now provided.

The index i that the algorithm Sig takes as input actually indicates that the third term in
input, m, is the i-th message in the list of messages m1,m2, . . . ,mN . We can then define the
following projector:

πi :MN →M such that (m1,m2, . . . ,mN ) 7→ mi,

where πi ∈ F , ∀ i ∈ [N ]. A signature scheme is said correct if it verifies the projection for
any signed message m ∈ M and if it also verifies the output f(m1,m2, . . . ,mN ) ∈ M. More
precisely, this means that beyond verifying computations on multiple signatures, first of all the
single signatures have to be valid by themselves. In the latter case, as we said, the verification
algorithm takes as admissible function the projector on a single message (i.e. Vrf (k′, τ,m, σ, πi)),
reducing Vrf to the usual verification algorithm of a digital signature (i.e. Vrf (k′, τ,m, σ)). For
this reason, we will denote it with just four parameters in the input, omitting the function πi.

Definition 62. A homomorphic signature scheme is correct if for each output by the algorithm
Set(1λ, N) the following conditions are valid:

(1) For all τ ∈ {0, 1}λ, for all m ∈M, if σ is the output of Sig(k, τ,m, i), then

Vrf(k′, τ,m, σ) = ok.
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(2) For all τ ∈ {0, 1}λ and for all the (mi, σi) pairs for which Vrf(k′, τ,mi, σi) = ok, with
i ∈ {1, 2, . . . , N},

Vrf(k′, τ, f(~m), ~σ,Eval(k′, τ, f, ~σ)) = ok,

where ~m := (m1,m2, . . . ,mN ) and ~σ := (σ1, σ2, . . . , σN ).

4.1.3 Security of Homomorphic Signatures

The strongest security notion for digital signatures cannot be achieved by the homomorphic
ones. That is due to their intrinsic design: as Johnson et al. pointed out in [JMSW02], no
homomorphic signature will ever be safe against existential forgeries. Clearly, if the signature is
homomorphic with respect to the operation “∗”, by definition, this means that from two signa-
tures on the messages m1 and m2, one can directly compute a signature on m1 ∗m2. Therefore,
the only thing we can require is that no one is able to forge signatures on messages outside
span∗(m1,m2, . . . ,mN ).

It seems that the homomorphic signatures’ notion of security is correlated to one of the following
two facts:

(1) the size of span∗(m1,m2, . . . ,mN ) with respect to the number of elements m1,m2, . . . ,mN

itself. What we wish to have is indeed that a big set of messages span into a small space,
or at least that a few messages don’t have a large span.

(2) the hardness of the decomposition problem inside span∗(m1,m2, . . . ,mN ). We would like
indeed that it is difficult to write a message m ∈ span∗(m1,m2, . . . ,mN ) in terms of
m1,m2, . . . ,mN .

If the decomposition problem is difficult, then the scheme can be secure even if the first require-
ment is not satisfied. The contrary also holds: if the scheme doesn’t present a large span for a
small set of messages, it is still secure even though the decomposition is easy. Since being able
to quickly decompose a message may be useful also for the legitimate signer (see [Mol03]), we
do not consider the issue of having a hard decomposition. Therefore the definition of security
of a homomorphic signature is presented as follows (see [JMSW02]).

We define the advantage of an adversary A as the probability that she outputs a valid signature
(m′, σ′) for some message m′ /∈ span∗(m1,m2, . . . ,mN ), after adaptively querying signature for
messages m1,m2, . . . ,mN .

Definition 63. A homomorphic signature scheme is (t, q, ε)- secure against existential forgeries
(with respect to ∗), if every adversary A making no more than q chosen-message queries and
running in time at most t has advantage at most ε.
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4.2 Homomorphic Signature Schemes

In this section we present two types of signature schemes satisfying homomorphic properties.
First we provide a description of those schemes having the homomorphic property only. After-
wards, we discuss the homomorphic signature schemes presenting also the aggregate property.

4.2.1 Types of Homomorphic Signature Schemes

The whole set of homomorphic signatures can be divided according to the admissible function
each scheme supports. Specifically, we can distinguish:

• linearly homomorphic signatures;

• homomorphic signatures for polynomial functions;

• fully homomorphic signatures.

The signatures are presented in the same order they are listed above. That is, they are discussed
with respect to an admissible function which is less and less restrictive. For each section, the
differences with respect to the general definition of homomorphic signatures are highlighted.
Plus, the evolution from linearly up to fully is shown.

Linearly Homomorphic Signatures

A homomorphic signature scheme is linearly homomorphic used when the signed messages are
operated by linear functions.

Due to this specific instantiation, with respect to the general definition of homomorphic signa-
ture scheme, there are some differences to point out:

• the messages spaceM is the vector space FpN of dimension N defined over the finite field
Fp, for a prime number p. Such p is an additional output of the setup algorithm Set;

• the messages are vectors. More precisely, they are elements v ∈ FpN , i.e. v = (a1, a2, . . . , aN )
where ai ∈ Fp;

• if we consider the vectors v1, v2, . . . , vN , then the set F of admissible functions f ∈ F are
all the possible linear combinations in the Fp-linear span of v1, v2, . . . , vN .

Therefore, the homomorphic property in this context is specified as follows. Given one signature
per message v1, v2, . . . , vN in FpN , anyone can compute a signature for a vector v′ ∈ FpN , where:

• v′ := f(~v) =
∑N

i=1 civi, where ~v := (v1, v2, . . . , vN );

• c1, c2, . . . , cN ∈ Fp.
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The definition of linearly homomorphic signature follows (see [BFKW09]).

Definition 64. A linearly homomorphic signature scheme is a tuple of the following probabilis-
tic, polynomial-time algorithms:

• Set(1λ, N). It takes as input a security parameter λ in unary and an integer N . It
outputs a secret key k, the respective public key k′ and a prime number p. The public
key determines the space of messages FpN , the space of signatures FpN , and the set F of
admissible functions f : FpN → FpN .

• Sig(k, τ, v, i). It takes as input a secret key k, a tag τ ∈ {0, 1}λ, a vector v ∈ FpN , and an
index i ∈ {1, 2, . . . , N}. It outputs a signature σ ∈ FpN , computed using the secret key k,
which is the signature for the i-th message v of the dataset tagged by τ .

• Vrf(k′, τ, v, σ, f). It takes as input a public key k′, a tag τ ∈ {0, 1}λ, a vector v ∈ FpN , a
signature σ ∈ FpN , and a function f ∈ F . It outputs “ ok” if σ is a valid signature for
the vector v, output of the function f over the dataset tagged by τ , under the public key
k′. It outputs “ bad” otherwise.

• Eval(k′, τ, f, ~σ). It takes as input a public key k′, a tag τ ∈ {0, 1}λ, a function f ∈ F , and
a tuple of signatures ~σ ∈ FpN . It outputs a signature σ′ =

∑N
i=1 ciσi ∈ FpN for a function

f ∈ F over the (tuple of) signatures ~σ ∈ FpN , labeled by tag τ ∈ {0, 1}λ.

For the correctness, we refer to Definition 62, where the message m ∈ M is instead a vector
v ∈ FpN and f(~m) =

∑N
i=1 civi.

Homomorphic Signatures for Polynomial Functions

A homomorphic signature for polynomial functions is a signature scheme that allows for poly-
nomial functions on signed messages. The first of such schemes is proposed in [BF11a], where
actually the polynomials are multivariates and of bounded degree. It can be seen as a general-
ization of linearly homomorphic schemes, since in the linearly homomorphic schemes the set of
admissible functions is nothing but a polynomial of degree one. The definition of homomorphic
signatures for polynomial functions we give is a generalization of the original one presented in
[BF11a]. Though, the definition will take into account a maximum degree of the polynomials,
which are multivariate.

As described in [BF11a], the general framework of such signatures is composed of the proper
tools to allow for polynomial functions:

• the message space is a finite field Fp, for a prime number p;

• the space of signed messages is the polynomial ring R := Z[x]/〈F (x)〉, for a monic irre-
ducible polynomial F (x) of degree d. Such polynomial is the new output of the algorithm
Set;

• the set of admissible functions F ⊂ Fp[x1, . . . , xN ] for the variables x1, . . . , xN , with
coefficients in {−y, . . . , y} and degree at most d, where y and d are positive integers.
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Therefore, the homomorphic property in this context is specified as follows. Given one signature
per message m1,m2, . . . ,mN , anyone can compute a signature for the polynomial f(~m) =∑`

j=1 cjYj(~m) where:

• ~m = (m1,m2, . . . ,mN );

• ` :=
(
N+d
d

)
− 1;

• {Yj}`j=1 is the set of non-constant monomials x1
e1 , x2

e2 . . . , xN
eN of degree

∑
eN ≤ d;

• c1, c2, . . . , cl are coefficients in Fp.

Definition 65. A homomorphic signature scheme for polynomial functions is a tuple of the
following probabilistic, polynomial-time algorithms:

• Set(1λ, N). It takes as input a security parameter λ in unary and an integer N . It outputs
a secret key k, the respective public key k′, a prime number p, and a monic irreducible
polynomial F (x) of degree d. The public key determines the space of messages Fp, the
space of signatures R, and the set F ⊂ Fp[x1, . . . , xN ] of admissible functions, where
y = poly(λ) and d = O(1).

• Sig(k, τ,m, i). It takes as input a secret key k, a tag τ ∈ {0, 1}λ, a message m ∈ Fp, and
an index i ∈ {1, 2, . . . , N}. It outputs a signature σ ∈ R, computed using the secret key k,
which is the signature for the i-th message m of the dataset tagged by τ .

• Vrf(k′, τ,m, σ, f). It takes as input a public key k′, a tag τ ∈ {0, 1}λ, a message m ∈ Fp,
a signature σ ∈ R, and a function f ∈ F . It outputs “ ok” if σ is the valid signature for
the message m, output of the function f over the dataset tagged by τ , under the public
key k′. It outputs “ bad” otherwise.

• Eval(k′, τ, f, ~σ). It takes as input a public key k′, a tag τ ∈ {0, 1}λ, a function f ∈ F , a
tuple of signatures ~σ ∈ R. It outputs a signature σ′ = f(~σ) ∈ R for a function f ∈ F over
the (tuple of) signatures ~σ ∈ R, labeled by tag τ ∈ {0, 1}λ.

For the correctness, we refer to Definition 62, where f(~m) =
∑`

j=1 cjYj(~m).

Remark 4.1. We observe that in [BF11a], the computation of f ∈ Fp[x1, x2, . . . , xN ] over the
tuple of signatures ~σ is actually performed in two steps. Indeed f is firstly lifted to a function,
f̂ ∈ Z[x1, x2, . . . , xN ] defined as f̂ :=

∑l
j=1 cjYj(x1, x2, . . . , xN ), where c1, c2, . . . , cN are integer

coefficients. Then σ′ is the output of f̂(~σ).

Fully Homomorphic Signatures

With the fully homomorphic signatures we are not restricted anymore to perform just one group
operation over authenticated messages. Now, being allowed to use both + and × over a field Fp,
we can evaluate any function. Such a function is now described by a circuit C with a certain size
and a certain depth d. We don’t propose here the definition of a fully homomorphic signature
scheme, since it is almost the same as for a general homomorphic signature (Definition 61). We
just discuss the few variations to take into account.
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• As we already said, the function is seen as a circuit, which is denoted as C :MN →M.
In literature, the maximum size of the dataset is denoted by l instead of N .

• Instead of the set of admissible function, we have the circuit family, which is denoted by
C.

• The algorithm Setup outputs the private key and the public key, but not the set of
admissible functions anymore.

• The notion of correctness remains the same with the remark that the circuit C can also
be a projection circuit Pi, i.e. P (m1, . . . ,mN ) = mi. That means that the correctness
must hold for single-message signatures [BFS14].

For the correctness, due to the generality of the function that a fully homomorphic scheme
supports, we refer directly to Definition 62, where the description of such f covers all types of
functions.

4.2.2 Homomorphic Aggregate Signatures

In this section we discuss signature schemes for the multiuser case. In such scenario, we want to
obtain a signature which supports the aggregation of different signatures on different messages,
signed by different users, each of them with its own private key. This task is fulfilled by the
so-called aggregate signatures, firstly introduced by Boneh et al. in [BGLS03b]. In case we also
need to compute on the authenticated data that we want to aggregate, we need a so-called
homomorphic aggregate signature scheme.

In the following, we first discuss the definition and the framework of a general aggregate sig-
nature. Then we define what a homomorphic aggregate signature is and finally describe the
linearly homomorphic aggregate ones.

Aggregate Signatures

An aggregate signature scheme combines multiple signatures into a single one. If we have N
different messages and their N respective signatures, thanks to the aggregate signature scheme
it is possible to compute a single signature for all the N messages. Such an aggregated signature
is as long as the individual ones.

More precisely, suppose that N users u1, u2, . . . , uN want to obtain a signature σ which is an
aggregation of the respective signatures σ1, σ2, . . . , σN . Each signature σi has been obtained by
user ui authenticating message mi, using its private key ki. Indeed each ui has its own private-
public key pair (ki, k

′
i). In addition, the scheme is also requested to be incremental. That is,

after aggregating N signatures obtaining the signature σ, it is always possible to aggregate a
further one σN+1. This means that we don’t have to start the process from the scratch and
re-set the computations for σ1, σ2, . . . , σN , σN+1. Instead, it is sufficient to generate the final
signature σ′ by aggregating σN+1 and σ.

As for any other signature, also the aggregate one is defined over the messages space M, the
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signatures space Y, and the set of secret and public keys K and K′, respectively. Novelties are
instead introduced as regards the algorithms:

• the algorithm Set for the preliminary stage, where for each user the secret key (used in
the signing process) and the respective public key (used in the verification process) are
chosen;

• the algorithm Sig takes as input a secret key, a message and in addition an index i ∈
{1, 2, . . . , N}, in order to specify the user ui together with its secret key ki and message
mi;

• the algorithm V rf takes as input a message, a signature, and a string of n public keys
k′1, k

′
2, . . . , k

′
N (indicated by ~k′), one for each signer;

• a new algorithm is introduced, that is the algorithm Aggσ which aggregates the signatures
σ1, σ2, . . . , σN , computing the signature σ.

A more formal and precise definition follows.

Definition 66. An aggregate signature scheme is a tuple of the following probabilistic, poly-
nomial-time algorithms:

• Set(1λ). It takes as input a security parameter λ in unary. It outputs a pair (ki, k
′
i) of

secret and public keys for each user i. The public keys determine the space of messages
M and the space of signatures Y.

• Sig(k,m, i). It takes as input a secret key k, a message m ∈ M, and an index i ∈
{1, 2, . . . , N}. It outputs a signature σ ∈ Y, which is the signature for the i-th message
m, by means of the i-th secret key k.

• Vrf(~k′,m, σ). It takes as input the public keys’ string ~k′, a message m ∈M and a signature
σ ∈ Y. It outputs “ ok” if σ is a valid signature for the message m, under the public keys
~k′. It outputs “ bad” otherwise.

• Aggσ(~k′, ~m,~σ). It takes as input a public keys’ string ~k′, a messages’s string ~m ∈M, and a
signatures’ string ~σ ∈ Y. It outputs a signature σagg ∈ Y, which is the aggregate signature

of the signatures in ~σ of the messages in ~m, under the public keys in ~k′, respectively.

Now we give the definition of correctness. Roughly speaking, an aggregate signature scheme
is correct if the verification holds for the independent signatures over the single messages and
the aggregate signature over the aggregate message. In the first case, the algorithm Vrf takes
as input just one public key k′, that is the one corresponding to the secret key k by which the
single message has been signed. Therefore in this situation the algorithm Vrf coincides to the
usual one defined for a classical digital signature.

Definition 67. An aggregate signature scheme is correct if for each output (k, k′) of the algo-
rithm Set(1λ), the following conditions are valid:
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(1) For all i ∈ {1, 2, . . . , N}, if σ is the output of Sig(k,m, i), then Vrf(k′,m, σ) = ok.

(2) If σi is the output of Sig(k, τ,m, i), then Vrf(~k′, ~m,Aggσ(~k′, ~m,~σ)) = ok.

Remark 4.2. Everything we have said so far also holds for any arbitrary subset U of the N
users, where 0 < |U | < N .

Homomorphic Aggregate Signatures

Homomorphic aggregate signatures combine together two properties which at first seem to be
incompatible. It fact, as discussed in ([ZYW12]), it is at the same time:

• a signature which combines signatures without operations on messages, produced by dif-
ferent users (aggregate signature);

• a signature which combines signatures on messages from the same user using an admissible
function (homomorphic signature).

However, a signature offering both of the above properties is very desirable.

In the following, we will add the homomorphic property (that is, the possibility to compute on
authenticated data) to the aggregate signatures’ definition. Some differences have to be taken
into account:

• the algorithm Set takes as input a security parameter and, in addition, an integer N ,
which stands for the maximum number of users the scheme can support. Therefore, the
parameter N has to be decided a priori and this means that the incremental property of
aggregate signatures is lost;

• the algorithm Aggσ takes as input a public keys’ string, a messages’ string, and a signa-
tures’ string. In addition, it takes as input a tag τ ∈ {0, 1}λ and an admissible function
f ∈ F , since the computation over the messages m1,m2, . . . ,mN reflects also on the
corresponding signatures σ1, σ2, . . . , σN ;

• a new algorithm is introduced, that is the algorithm Aggm. It takes as input a public
keys’ string, a tag τ ∈ {0, 1}λ, a signatures’ string, and an admissible function f ∈ F . It
combines the messages m1,m2, . . . ,mN according to f ;

• the algorithm Sig takes as input a secret key, a message, and an index. In addition, it
takes as input a tag τ ∈ {0, 1}λ;

• the algorithm Vrf takes as input a public keys’ string, and a message. In addition, it
takes as input an admissible function f ∈ F .

The following definition formalizes the modifications discussed in a organic and precise way.

Definition 68. A homomorphic aggregate signature scheme is a tuple of the following proba-
bilistic, polynomial-time algorithms:
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• Set(1λ, N). It takes as input a security parameter λ in unary and an integer N . It outputs
N pairs (ki, ki

′) of secret and public keys, one for each user i. The public keys determine
the space of messages M, the space of signatures Y, and the set F of admissible functions
f :MN →M.

• Sig(k, τ,m, i). It takes as input a secret key k, a tag τ ∈ {0, 1}λ, a message m ∈M, and
an index i ∈ {1, 2, . . . , N}. It outputs a signature σ ∈ Y, computed using the i-th secret
key k, which is the signature for the i-th message m.

• Vrf(~k′, τ,m, σ, f). It takes as input a public keys’ string ~k′, a tag τ ∈ {0, 1}λ, a message
m ∈ M, a signature σ ∈ Y, and an admissible function f ∈ F . It outputs “ ok” if σ is a
valid signature for the message m, signed using the public keys ~k′, output of the function
f over the dataset tagged by τ . It outputs “ bad” otherwise.

• Aggm(~k′, τ, ~m, f). It takes as input a public keys’ string ~k′, a tag τ ∈ {0, 1}λ, a messages’
string ~m ∈ M, and an admissible function f ∈ F . It outputs a message mAgg ∈ M,
which is the aggregate message, output of the function f over the string of messages ~m in
the dataset labeled by tag τ , coming from the users with public keys ~k′, respectively.

• Aggσ(~k′, τ, ~σ, f). It takes as input a public keys’ string ~k′, a tag τ ∈ {0, 1}λ, a signatures’
string ~σ ∈ M, and an admissible function f ∈ F . It outputs a signature σAgg, which
is the aggregate signature, output of the function f over the signatures ~σ in the dataset
labeled by tag τ , coming from the users with public keys ~k′, respectively.

The correctness definition takes into account the new algorithm Aggm and the introduction of
the homomorphic property. When we verify a single signature, as for the aggregate signature
schemes, the algorithm Vrf takes as input just one public key and not N of them. Furthermore,
as for the homomorphic signature schemes, the admissible function f is meant as a projection
from the dataset to the message in question.

Definition 69. A homomorphic aggregate signature is correct if for each output of secret-public
key pair (k, k′) of the algorithm Set(1λ, N), the following conditions are valid:

(1) For all τ ∈ {0, 1}λ, for all i ∈ {1, 2, . . . , N}, if σ is the output of Sig(k, τ,m, i), then
Vrf(k′, τ,m, σ) = ok.

(2) If σi is the output of Sig(k, τ,m, i), then

Vrf(~k′, τ,Aggm(~k′, τ, ~m, f),Aggσ(~k′, τ, ~σ, f), f) = ok.

Linearly Homomorphic Aggregate Signatures

The homomorphic aggregate signature schemes present in literature so fare are the linearly ones.
That is, the computation supported is a linear combination of different messagesm1,m2, . . . ,mN

coming from different users. Such computation is then reflected on the signatures counterpart.
In fact, the final signature σ′ joins together the signatures σ1, σ2, . . . , σN , according to the same
linear combinations as used for the messages.
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In order to derive the linearly homomorphic aggregate signatures from the homomorphic aggre-
gate ones, there are some changes to take into account:

• the messages space M and the signatures space Y are the vector space FpN of dimension
N defined over the finite field Fp, for a prime number p. Such p is the new output of the
algorithm Set;

• the messages are vectors v ∈ FpN , i.e. v = (a1, a2, . . . , aN ) where ai ∈ Fp;

• if the vectors v1, v2, . . . , vN are a basis for FpN , then the set of the admissible functions
f ∈ F are all the possible linear combinations in the Fp-linear span of v1, v2, . . . , vN .

The definition of a linearly homomorphic aggregate signature scheme shapes then on Definition
68, taking into account that the general admissible function f ∈ F now has to be seen as
f =

∑N
i=1 civi for the messages and f =

∑N
i=1 ciσi for the signatures. The same holds for

correctness.

Remark 4.3. A formal definition of linearly homomorphic aggregate signature is provided in
[ZYW12] and [Jin14]. Though, let us notice that in literature the linearly homomorphic aggre-
gate signature is called homomorphic aggregate signature. Indeed, the unique examples available
so far allow just for linear combinations and therefore “linearly” is omitted. We prefer instead
to specify whether we are talking about a general homomorphic aggregate signature or a lin-
early one. Also because in the future, schemes supporting less restrictive functions might be
introduced.

4.3 Evaluation of Homomorphic Signature Schemes

Together with security, there are many other properties that should be taken into account when
evaluating a homomorphic signature scheme. In fact it might be important that a signature
generated according to an admissible function is indistinguishable from the original ones. Or
it may be that we need a post-quantum signature scheme that it is expected to face quantum
computer attacks. In this case we have to make sure that the underlying hardness assumption
is not based on the integer factorization or the discrete logarithm problem. Furthermore, there
are situations where computational efficiency and succinctness of the signature are important
features.

As many of the scheme proposed in the literature do not provide any concrete figures on their
efficiency and they usually provide only a very compact analysis with respect to different se-
curity levels, we do think that a fair comparison is not possible. Thus, we omit the dimension
computational efficiency in our comparison.

4.3.1 Complexity Assumptions

Basically, so far there are three kinds of settings in which a homomorphic signature scheme can
be instantiated. They are either built on assumptions related to the discrete logarithm problem
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in (bilinear) groups, or based on the RSA, or on lattice problems. The first two cases deal with
the classical discrete logarithm and integer Factorization problems which are proven to be not
resilient against quantum computer attacks. The lattice based problems instead are assumed
to provide protection also against such adversaries. For a formal treatment of the required
assumption we refer the reader to Section 1.3.2.

4.3.2 Security Definitions

Two operative definitions of what security (specifically, unforgeability) is, are provided in the
next two paragraphs. The second paragraph presents the strong and the more recent one, while
the first paragraph provides a weaker definition that might be sufficient for some applications.

Boneh et al.’s Security Definition

As we already mentioned, the tag τ is a useful element in the definition of homomorphic signa-
tures. This in fact allows for a secure homomorphic signature scheme, as Boneh et al. formalized
in [BFKW09]. Since the game presented there is specific for the linear ones, we describe a more
general definition given in [BF11a].

Let us recall that a homomorphic signature scheme is the tuple S= (Set , Sig, Vrf, Eval), where
λ is the security parameter and N the maximum data set size.

Definition 70. A homomorphic signature scheme S is unforgeable if for all N and any prob-
abilistic polynomial-time adversary A, in the following game the advantage of A is negligible
with respect to λ:

• Set: The challenger obtains the secret-public key pair (k, k′) by running Set(1λ, N). The
public key k′ determines the space of messages M, the space of signatures Y, and the set
F of admissible functions f :MN →M. The challenger gives k′ to A.

• Queries: Proceeding adaptively, the adversary A selects a sequence of data sets ~mi ∈MN .
For each i ∈ {1, 2, . . . , N}, the challenger chooses the tag τi ∈ {0, 1}λ, uniformly at
random. The challenger gives τi and the signatures σij, output of Sig(k, τi,mij , j) for
j ∈ {1, 2, . . . , N}, to A.

• Output: A outputs:

– a tag τ∗ ∈ {0, 1}λ;

– a message m∗ ∈M;

– a signature σ∗ ∈ Y.

As discussed in [Fre12], the forgery can be done by A in two ways: either it produces a fresh
signature for data which it hadn’t seen before, or, seeing a particular data set, it is able to
authenticate an incorrect value of one of its functions. We call the first case “Type I forgery”
while the second one “Type II forgery”. We refer to [BF11a] for the following formalization.
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The adversary A wins if Vrf(k′, τ∗,m∗, σ∗, f) = 1 and either

• Type I forgery : τ∗ 6= τi for all i ∈ {1, 2, . . . , N}.

• Type II forgery : τ∗ = τi for a certain i and m∗ 6= f(~mi).

Remark 4.4. Without the tag τ , the definition of security would be weaker. Indeed without
such a file identifier, the adversary would just be able to query some messages on M and not on
an entire data set (see [Zha10]).

Freeman’s Security Definition

In [Fre12], Freeman strengthens the adversary: A is not restricted to query all the messages
belonging to a given data set at one time. Now the attacker can query one message at a time,
and choosing the following one based on the output of the previous query. Furthermore, it can
do this adaptively within each data set and spread the queries among the data sets. In this
way the attacker can win in a third way: “Type III forgery”. That is, A might output a triple
(m∗, σ∗, f) where σ∗ is the signature over the pair (m∗, f) which corresponds to a previously
seen data set. Though, the adversary hasn’t queried enough messages on that data set in order
to shape precisely the behavior of f . For further details we refer to [Fre12].

4.3.3 Privacy

In many practical applications it is necessary to protect derived signatures’ privacy. There are
three different notions of privacy, according to the level of protection achieved by a scheme.

Let us call σ1, σ2, . . . , σN the set of signatures from which a signature σ′ for a message m′ is
derived. A homomorphic signature scheme is said to be weakly context hiding if σ′ only reveals
information about the corresponding message m′, but doesn’t leak any information about the
dataset m1,m2, . . . ,mN of the respective above signatures.

This notion of privacy has been introduced in [ABC+12], together with its stronger version:
the strong context hiding. Such privacy level is achieved by signature schemes when it is not
even possible to see that the signature σ′ has been computed as the output of σ1, σ2, . . . , σN .
This privacy level requires the infeasibility of linking the signature σ′ to the original ones
σ1, σ2, . . . , σq, even in the case that they are publicly revealed (see [Jin14]).

A further privacy level is introduced in [ALP12]. According to the authors, the definition in
[ABC+12] takes only the indistinguishability from honestly generated signatures into account.
In fact, there are signature schemes (like the one presented in [AL11]) which satisfy that property
even if an attacker generates the signature using an admissible function. Note that the strong
context hiding doesn’t imply unlinkability when the original signatures are chosen by an attacker.
In order to address this, they define a new notion of privacy, said completely context hiding,
which requires (statistical) context hiding on adversarially chosen signatures with private key
exposure (see [Jin14]).

For a more formal discussion of these privacy notions we refer the reader to Section 2.4.1.
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4.4 State-of-the-Art of Homomorphic Signatures

In this subsection the state-of-the-art with respect to homomorphic signature schemes is pre-
sented. Due to the large number and the different properties, they are discussed in separate
groups, according to the admissible functions they support. For all the schemes we review the
underlying hardness assumption (setting) and investigate parameters of the scheme such as the
signature’s length. Afterwards, the general security of the scheme is discussed with respect to
type of adversary, achieved level of privacy as well as the model used to prove the security.

4.4.1 Linearly Homomorphic Signatures

The first homomorphic signature schemes introduced were the linearly ones. Though the earli-
est signature we present is the one proposed by Boneh et al. in 2009 in [BFKW09], it is not the
first one in literature. Actually, many schemes had been published before ([CJL09], [ZKMH07],
[YWRG08], [YCK10]), but they have already been proven to be not practical or even not com-
pletely secure ([Wan10], [Zha10], [DCNR11]). Therefore, we do not discuss them in this work.
On the other hand, we must highlight the fact that increasing the processing overhead is the
common drawback of all these public-key cryptographic primitives (see [LGK+11]). However,
in recent works many improvements have been done in this sense.

Subsequently, we group linearly homomorphic signature schemes into ones that come with a
security proof in the random oracle model and ones that come with a security proof in the
standard model.

Random Oracle Model

Signing a Linear Subspace: Signature Schemes for Network Coding, by Boneh et
al. (2009)

Boneh et al.’s work [BFKW09] is the milestone of linearly homomorphic signatures. Indeed it
is considered the first one to provide a practical framework for such schemes and the notion of
a weak adversary is defined. The scheme proposed is proven secure assuming that the co-CDH
problem is hard (see Section 1.3.2). The scheme is claimed to have low communication overhead,
because of the independence of both public-key and signature’s sizes with respect to the data
size (see [Zha10]). Furthermore, a lower bound on signatures’ length is provided, which shows
that the construction is optimal in the sense of [BFKW09]. Besides being the first practical
scheme, it has initially only investigated in context of a weak adversary (see Section 4.3.2).
Though, the signature enjoys actually the stronger property and is strongly context hiding (cf.
[ALP13]).

Secure Network Coding Over the Integers, by Gennaro et al. (2010)

In 2010, Gennaro et al. presented in [GKKR10] a RSA-based signature scheme (for a definition
of the RSA assumption see Section 1.3.2). The security is proven under the same model as in
[BFKW09]: this means that the signature is unforgeable against the weak adversary only. The
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level of privacy guaranteed by the scheme has not been specified yet.

The signature scheme described in [BF11b] is the first one to authenticate vectors over binary
fields. The hardness assumption exploited in order to prove the security of the scheme is
k-SIS (see Section 1.3.2). This signature scheme is built on the one presented in [GPV08],
where the signatures are short vectors in lattices. Therefore also for the signatures provided by
[BF11b], the length is supposed to be quite reasonable. While the scheme is resistant to the
weak adversary only, it is weakly context hiding in terms of privacy. Note that in this case the
number of the linear combinations that can be authenticated by the scheme is bounded (see
Remark 4.5).

Lattice-Based Linearly Homomorphic Signature Scheme over Binary Fields, by
Wang et al. (2013)

The work presented in [WHW13] by Wang et al. succeeds the first homomorphic schemes
defined over binary fields [BF11b] and relies on a hardness assumption over lattices, i.e., the
SIS assumption (cf. Section 1.3.2).

As pointed out by the authors of [WHW13], the scheme is secure against Type I forgery and
Type II forgery (cf. Section 4.3.2); thus it is unforgeable only against the weak attacker.
Furthermore, the scheme is weakly context hiding, as defined in Section 4.3.3. With respect to
[BF11b], we can then conclude that no improvements have been done in terms of security and
privacy.

Remark 4.5. As discussed in [Jin14], there is an open problem which concerns all the current
lattice-based homomorphic signature schemes over binary field. That is, they are L-limited,
where L is the upper-bound on the maximum number of signatures that can be combined.

Standard Model

Homomorphic Network Coding Signatures in the Standard Model, by Attrapadung
and Libert (2011)

The signature scheme described in [AL11] is the first linearly homomorphic signature scheme
proven in the standard model. The scheme is defined over bilinear groups, where two decisional
assumptions (Ass. 1 and Ass. 2, see Section 1.3.2) and one computational (Ass. 3, see Section
1.3.2) are adopted to prove unforgeability. In this case, instead of working with prime fields
(like for the scheme described in [BFKW09]), the coordinates have to be chosen in ZN , where
N is the composite order of the bilinear groups. The signature is constant in terms of size:
it consists of three group elements. Furthermore, like in [BFKW09], the unforgeability of the
scheme can only face the weak adversary defined in Section 4.3.2. Therefore protection against
re-randomizing signatures by adversaries is not guaranteed and special countermeasures have
to be taken. Note that, according to [Fre12], it is possible to modify the proof in the standard
model and to face even the strong adversary. Another valuable property is that the scheme is
strongly context hiding (see Section 4.3.3).
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Computing on Authenticated Data: New Privacy Definitions and Constructions,
by Attrapadung et al. (2012)

The same authors of [AL11] proposed one year later a similar scheme in [ALP12]. It also works
in a composite order bilinear group setting and requires assumptions are Ass. 1, Ass. 2 , Ass.
4 and Ass. 5, as defined in Section 1.3.2. This scheme is a direct improvement of the previous
one described in [AL11]: in fact, while it achieves strongly context hiding privacy, the signature
is 33% shorter. Though, it is proven secure against the weak adversary only.

Adaptive Pseudo-Free Groups and Applications, by Catalano et al. (2011)

The scheme proposed by Catalano et al. in [CFW11] employs and extends the notion of pseudo-
free groups introduced by Rivest in [Riv04] The signature relies on the strong-RSA assumption
(see Section 1.3.2) and actually the authors proved that all known signature schemes built on
strong-RSA assumptions in the standard model are instances of their general framework.

As for [AL11], the unforgeability is proven according to the weak adversary. Even in this
case, the proof in the standard model can be modified such that it is secure against the strong
adversary defined in Section 4.3.2. The privacy notion has still to be clarified.

The signature is an element of Z∗n, where n is the RSA modulus. However, the linear combi-
nations are performed over the integers. This leads to the fact that the number of admissible
linear combinations is bounded, otherwise the the vector coordinates would grow too large.

Efficient Network Coding Signatures in the standard model, by Catalano et al.
(2012)

This scheme, described in [CFW12], was presented by the same authors of [CFW11] one year
later. It relies on the same hardness assumption (strong-RSA) of the scheme described in
[CFW11]. Though, it is an improvement in terms of size, since the signature is composed of
only one group element with respect to the signature of [CFW11]. In addition, the number
of admissible linear combinations is not bounded anymore like in [CFW11]. Indeed they are
computed modulo a certain prime number such that the vector coefficients cannot grow beyond
it. However, the scheme can cope with the weak adversary only.

Except for the improvement of [CFW11], in [CFW12] another scheme is proposed. This one is
defined over bilinear groups of prime order p and it is proven secure under the q-SDH assumption
(see Section 1.3.2). The scheme can achieve short signatures as well: it consists of one group
element and one more element belonging to Zp.

Improved Security for Linearly Homomorphic Signatures: A Generic Framework,
by Freeman (2012)

In [Fre12], Freeman transformed ordinary (i.e., non-homomorphic) signatures into homomorphic
schemes. Specifically, the author converted four of them and proved their security in the stan-
dard model, maintaining the original hardness assumptions they were relying on. That is, the
scheme proposed in [Wat05] under the CDH, the scheme proposed in [BB04] under the q-SDH,

WP: WP4 Deliverable: D4.4 Page: 67 of 114
Reference: prismacloud.eu Dissemination: PU Version 1.0 Status: Final

http://prismacloud.eu


Privacy and Security Maintaining Services in the Cloud
Overview of Functional and Malleable Signature Schemes

the scheme proposed in [GHR99] under the strong-RSA assumption and the scheme proposed
in [HW09] under the RSA assumption. In terms of efficiency and signatures’ size, the schemes
in [CFW12] achieve better performance. On the other hand, the four schemes in [Fre12] are
better in terms of security: the unforgeability is proven against the stronger adversary (which
is actually defined for the first time in this paper). Furthermore, the signatures are also weakly
context hiding: in fact in this work, also the issue of privacy was firstly highlighted.

Remark 4.6. Another important feature of the scheme in [CFW12] is that the to-be-signed
vectors’s length is unbounded. This is not true for the two constructions of [Fre12] relying on
RSA.

Efficient Completely Context-Hiding Quotable and Linearly Homomorphic Signa-
tures, by Attrapadung et al. (2013)

The work presented in [ALP13] by Attrapadung et al. is a linearly homomorphic signature
scheme relying on the Flex-DH assumption (defined in Section 1.3.2). This assumption was
necessary to improve the signature described in [ALP12] (which is only weakly context hiding)
in order to make it completely context hiding. In this way the signature is composed only of
group elements. However, the scheme can cope with the weak adversary only.

Overview of Linearly Homomorphic Signature Schemes

In Table 2, we summarize the properties of the linearly homomorphic signatures discussed so
far.

Scheme Setting Sig. size Adversary Privacy Model

[BFKW09] DLP constant in N weak complete ROM

[GKKR10] RSA 1 group elem. weak ∅ ROM

[BF11b] Lattice depends on N weak weak ROM

[WHW13] Lattice constant in N weak weak ROM

[AL11] DLP 3 group elem. weak strong SM

[ALP12] DLP 33% ≤ [AL11] weak strong SM

[CFW11] RSA 2 group elem. weak ∅ SM

[CFW12] RSA ≤ [CFW11] weak ∅ SM

[Fre12] DLP/RSA ≥ [CFW12] strong weak SM

[ALP13] DLP 16 group elem. weak complete SM

Table 2: Linearly Homomorphic Signature Schemes

4.4.2 Homomorphic Signature Schemes for Polynomial Functions

Signature schemes for polynomial functions extend the class of admissible signatures from linear
functions to polynomial functions of some fixed degree greater than one.

Homomorphic Signatures for Polynomial Functions, by Boneh and Freeman (2011)

This signature scheme proposed in [BF11a] is the first homomorphic signature supporting eval-
uation of multivariate, bounded-degree polynomials on authenticated data. It relies on the SIS
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hardness (see Section 1.3.2) assumption and is defined over ideal lattices. The signature size
depends logarithmically on the data size. On the other hand, the scheme can cope only with
the weak adversary. The security is proven in the random oracle model. The level of privacy
achieved by the signature scheme still needs to be clarified.

Homomorphic Signatures for Polynomial Functions with Shorter Signatures, by
Hiromasa et al. (2013)

Hiromasa et al. presented in [HMO13] a signature scheme which improves the one proposed in
[BF11a] in terms of the signature’s size. On the other hand, the secret key is longer. Regarding
all the other properties and parameters, the signature scheme is proven secure in the random
oracle model, using SIS as the underlying hardness assumption. Privacy is still a non specified
property.

Homomorphic Signatures with Efficient Verification for Polynomial Functions, by
Catalano et al. (2014)
The work presented in [CFW14] outperformes both the above signatures (i.e., the ones in
[BF11a, HMO13]). However, the scheme in [CFW14] relies on the k-Augmented Power Multi-
linear Diffie-Hellman Problem (k-APMDHP) introduced in their paper. The scheme relies on
multilinear maps and it is still a work-in-progress to define a practical and efficient one (see
[CLT15]). On the other hand, the size of the signature, the public key and the secret key
increases of a factor d, where d is the maximum degree of the polynomial supported. This
drawback is the expense to be paid in order to achieve a better security level than the scheme
proposed in [BF11a]. In fact, the signature scheme described in [CFW14] provides two substan-
tial improvements:

(1) the scheme doesn’t rely on random oracles anymore and comes with a security proof in
the standard model;

(2) the adversary is not assumed to query signatures on messages in a given data set all at
once. That is: the scheme is proven to be secure also in the presence of a strong adversary.

However, the open problem stated by the authors in [BF11a] of building a homomorphic sig-
nature providing privacy has still not been solved. Indeed none of the three signature schemes
supporting polynomial functions is at least weakly-context hiding.

Overview of Homomorphic Signatures for Polynomial Functions

In Table 3, we briefly present the properties of schemes supporting polynomial functions dis-
cussed so far.
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Scheme Setting Sig. size Adversary Privacy Model

[BF11a] Lattice O (d logN) weak ∅ ROM

[HMO13] Lattice ≤ [BF11a] weak ∅ ROM

[CFW14] DLP O (d3 + d2logN) strong ∅ SM

Table 3: Homomorphic Signature Schemes for Polynomial Functions

4.4.3 Fully Homomorphic Signature Schemes

Subsequently, we present homomorphic signature schemes where the class of admissible func-
tions is even larger and ideally not restricted any more.

Leveled Fully Homomorphic Signatures from Standard Lattices, by Gorbunov et
al. (2014)

In [GVW14], the first fully homomorphic signature scheme is proposed. That means that the
admissible function can be an arbitrary one. The function is described as a circuit whose depth
we denote by d. This scheme relies on the hardness of the SIS assumption (cf. Section 1.3.2)
and can evaluate arbitrary circuits over signed data. The signature scheme can be proven secure
either in the random oracle model or in the standard model. In the former case, we end with
short public parameters, while in the latter case they are even longer than the total size of the
dataset.

Note that, in both cases, instead, the signature’s size is independent of the data size and of the
circuit size. Though, this doesn’t mean that the signature is short: it is indeed dependent of
the depth d of the circuit, which is an a-priori fixed parameter. Therefore, even though we can
in principle perform any kind of transformation on the authenticated data, this is done at the
expense of having a larger and larger signature.

The adversary these schemes can cope with is the weak one. A particular technique is available
[BB11] to convert the schemes so that the scheme is secure against the strong adversary. Though,
this is possible at the expense of ending with high inefficiency (see [BFS14]): it would then be
possible to sign only few and short messages. Such restriction is a devolution regarding the
practicability of the schemes in real life. Furthermore, they are claimed not to lack information
about the original data beyond the outcome of the transformation itself. Therefore, according
to the terminology adopted in this work, weakly context hiding privacy is provided.

Adaptively Secure Fully Homomorphic Signatures Based on Lattices, by Boyen et
al. (2014)

In [GVW14] the authors also propose a fully homomorphic signature scheme based on lattices
and can be seen as a concurrent work to [GVW14]. Indeed some improvements have been done,
though introducing some problems not present in the aforementioned paper. Specifically, the
scheme cannot sign arbitrary circuits any more: rather the ones with poly-logarithmic depth
or the ones with polynomial depth. In the first case the hardness assumption is the SIS, while
in the second case the scheme relies on the sub-exponential SIS. An important improvement
of this work is that the scheme can cope with the strong adversary and this is proven in the
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standard model. Unfortunately none of the possible level of privacy is achieved, making the
protocol not applicable for many real-life applications.

Overview of Fully Homomorphic Signature Schemes

In Table 4, we review the properties of the above schemes.

Scheme Setting Sig. size Adversary Privacy Model Note

[GVW14] Lattice poly in depth weak weak SM large param.

[GVW14] Lattice poly in depth weak weak ROM short param.

[BFS14] Lattice not specified strong none SM poly-log depth

Table 4: Fully Homomorphic Signature Schemes

4.4.4 Homomorphic Aggregate Signatures and Multiple Users Case

In many practical applications it might be necessary to aggregate multiple signatures on mes-
sages, produced even by different users. Linearly homomorphic signatures are not required to
provide such a property and they do not consider the case of multiple distinct signers.

Among the digital signature schemes, the aggregate ones (see [BGLS03a]) provide such prop-
erties. They are designed to “aggregate” N different signatures (each of them has to be on
a distinct message) from N different signers by generating a single signature for them. Each
message-signature pair comes with an index i ∈ [N ] corresponding to the user i. The resulting
aggregate signature (together with the N messages) will then prove to the verifier that each of
the N users has signed one (and only one) of the N original messages.

Introducing the homomorphic property into an aggregate scheme is a quite improvement and up
to our knowledge, there are only two such schemes [ZYW12, Jin14]. They both support linear
operations over binary fields and rely on lattices. Therefore the hardness assumptions leading
to unforgeability are supposed to face even quantum computers’ attacks. Specifically, [ZYW12]
relies on the ISIS assumption (see Section 1.3.2), while [Jin14] relies on SIS. Furthermore, while
in [ZYW12] the signature’s length is as long as that of each original signatures, in [Jin14] the
signature is exactly two times longer. Instead, the public key length is the same for both
schemes.

Both of the signature schemes are proven unforgeable against the strong adversary. Furthermore,
the signature in [Jin14] provides also weakly context hiding privacy. Note that this scheme is a
variant of the linearly homomorphic signature introduced in [BF11b], where the same privacy
property holds and also apply to the multi-users case. Both schemes are proven in the random
oracle model.

In short, because of the improvements in terms of signature’s size, efficiency and privacy, the
signature by [Jin14] is more desirable than the one presented in [ZYW12].
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Having the aggregate property is not a necessary condition for a homomorphic signature to deal
with different signatures generated by different users. Indeed earlier works presented homomor-
phic signatures for the multi-users case ([CV10], [YYLF12]). In both proposals, the length of
the signatures is constant in the number of users N .

The properties of the two existing linearly homomorphic aggregate signatures discussed are
reported in Table 5.

Scheme Setting Sig. size Adversary Privacy Model

[ZYW12] Lattice constant in N strong ∅ ROM

[Jin14] Lattice constant in N strong weak ROM

Table 5: Linearly Homomorphic Aggregate Signature Schemes
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5 Malleable Signatures For Editing

In this section our focus is on a class of malleable signatures that can be facilitated to allow
edits of signed messages on a document level, where the most common approach is to view the
message as an (ordered) set of blocks.

In the following, we will present the state-of-the-art in terms of the security properties that
can be achieved for various forms of malleable signatures. We discuss append-only signature
schemes (AOS) in Section 5.2, sanitizable signature schemes (SSS) in Section 5.3, and redactable
signature schemes (RSS) in Section 5.4. Thereby, Section 5.3 (with exception of Section 5.3.3
on ESSS) and Section 5.4 are based upon material from the not yet published PhD-thesis of
Henrich C. Pöhls [Pöhed].

Append-only signatures strictly speaking do not allow to “edit” certain blocks (or submes-
sages) of some signed message. However, they still serve a somewhat related purpose. That is,
instead of removing certain message blocks, they allow to publicly append message blocks to
some signed message and to update the signature correspondingly.

Apart from appending, we further consider two other operations called redaction, i.e., removing
data, and sanitisation, i.e,. a controlled modification of data by alteration. See Fig. 3 for some
examples with and without visual traces of an edit.

Redactions are best described as blackening certain blocks from a document. A redaction
could actually remove blocks without traces or leave blackened blocks, i.e., indicators that a
redaction has taken place (they may or may not indicate their position or their length relative
to other blocks of the message). We emphasize that for applications which require privacy,
restoring removed or blackened parts of a document must be infeasible.

Sanitizations of a document allows modifications such as required in the context of pseudo-
nymization and anonymization (cf. [PH09] for the terminology), e.g., substituting real-names
with pseudonyms. Hence, the possible modifications for a sanitization are not just removal of
information (as with redaction), but to generalise, disguise or even fully replace the information
from blocks by replacement. Sanitization could also be used to provide a mechanism to update
signed data after signature creation, e.g., re-compute a result with additional data.

Figure 3: Different types of modification, if the modification of ‘SECRET’ is authorised the
signature still verifies as valid: (a) original (b) signed original (c) visibly redacted + visible
position of redaction (d) invisibly redacted (e) visibly sanitized (f) invisibly sanitized [Pöhed]
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5.1 Preliminaries and Notation

We assume that there is a decomposition function decompose that splits a message14 m into `
blocks, for some ` ∈ N, where for each i ∈ [`] we have that block m[i] ∈ {0, 1}∗. Thereby, we
use the following conventions:

• With |m| we denote the number of blocks, i.e., |m| = `.

• We assume that the blocks are not allowed to overlap.

• A block is the smallest unit of data that can be subjected to a modification opera-
tion.

• We make no assumption about what is contained in a block, e.g., we do not assume
that each block captures a single semantic concept, or that each sentence in a text
document is one block.

• Without loss of generality, we assume that all blocks of m are of equal length, i.e.,
for all i ∈ [`] we have that m[i] ∈ {0, 1}k for some fixed k ∈ N. This does not impose
any restriction, but makes the presentation easier.

In our subsequent presentation a document will always be treated as an ordered set (sequence) of
blocks. However, schemes considering tree- [BBD+10, SPB+12b], or set-like structure [JMSW02,
PS14] have also been considered and can be found in the literature.

5.2 Append-Only Signatures

While append-only signatures do not allow to “edit” blocks of some signed message, they still
serve for a somewhat related purpose. That is, instead of removing certain message blocks, they
allow to publicly append message blocks to some signed message and to update the signature
correspondingly. Append-only signatures (AOS) were first introduced in [KMPR05]. We recall
their formal definitions and the security model below:

Definition 71 (AOS Scheme). An AOS is a tuple of PPT algorithms (Setup,Append,Vfy),
which are defined as follows

AOS.Setup(1κ): On input of a security parameter κ, this algorithm generates and returns a key
pair (skAOS,pkAOS), where skAOS is the signature on the empty message.

AOS.Append(pkAOS, σn−1,mn): On input of a public key, a signature on a message (m1, . . . ,
mn−1) and a message mn, this algorithm computes and outputs a signature σn on the
message (m1, . . . ,mn).

AOS.Vfy(pkAOS,M, σ): On input of a public key pkAOS, a message M = (m1, . . . ,mn) and a
signature σ, this algorithm returns 1 if σ is a valid signature for M under pkAOS and 0
otherwise.

14‘message’ can be used interchangeably with ‘data’ or ‘document’ in this context
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For security, AOS are required to be correct and unforgeable under chosen message attacks.
While correctness straight-forwardly requires that the verify algorithm always outputs 1 for all
honestly generated keys and signatures, unforgeability under chosen message attacks for AOS
is defined as follows:

Definition 72 (AOS-UF-CMA). An AOS is called unforgeable under chosen message attacks,
if [

(skAOS, pkAOS)← AOS.Setup(1κ), (M∗, σ∗)← AOSign(pkAOS,·)(pkAOS) :
AOS.Vfy(pkAOS,M

∗, σ∗) = 1 ∧ @ M ∈ QSign : M vM∗

]
≤ ε(κ),

where OSign(pkAOS,M) is an oracle that returns signatures σ on messages M = (m1, . . . ,mn),
QSign is used to keep track of the oracle queries, and M v M∗ denotes that M is a prefix of
M∗.

5.2.1 Constructions

In [KMPR05], various constructions of AOS are provided. Subsequently, we briefly discuss their
underlying principles:

Certificate-Based AOS. The idea behind this scheme is to sign pairs of messages and public
keys using a conventional signature scheme. More precisely, a signature resembles a chain

((m1, pk2), σ1), . . . , (mn, pkn+1), σn), skn+1),

where σi denotes a conventional signature on (mi, pki+1). To append a message mi+1 to the
signature above, one generates a key pair (skn+2, pkn+2) and extends the chain to

((m1, pk2), σ1), . . . , (mn, pkn+1), σn), ((mn+1, pkn+2), σn+1), skn+2).

In [KMPR05], the authors additionally proposes to reduce the signature size of the construction
above by using sequential aggregate signatures [LMRS04], a primitive that allows to sequentially
aggregate signatures to a single signature. However, in this construction it is still required to
store n public keys of the sequential aggregate signature scheme.

Hash Tree-Based AOS. The basic approach of the hash tree-based construction in [KMPR05]
is to use a pseudorandom generator (PRG) to assign random values to the leaves of a binary
tree of depth d (i.e., to apply the GMM construction [GGM86] of a PRF from a length doubling
PRG). The used seed represents the secret key, and each leave of the tree represents a message
Mi = (mj)

k
j=1, where mj ∈ {0, 1} and k ≤ d. Once this tree is built, one uses a hash function

to compute the Merkle hash for this tree15, which is used as public key. Verification amounts to
recomputing the root hash, when given the message and corresponding authentication path16.

15That is, the hash value at the root of the tree, which is obtained by recursively computing the pairwise hash
of neighbouring nodes.

16The hash values of all siblings of the respective node on the path to the root.

WP: WP4 Deliverable: D4.4 Page: 75 of 114
Reference: prismacloud.eu Dissemination: PU Version 1.0 Status: Final

http://prismacloud.eu


Privacy and Security Maintaining Services in the Cloud
Overview of Functional and Malleable Signature Schemes

Relationship of AOS and HIBE. In [KMPR05], it is shown that hierarchical identity based
signature (HIBS) schemes are equivalent to AOS. They show the equivalence based on black-
box constructions in both directions. To obtain shorter signatures sizes (square root of the
message length), they propose a concrete AOS scheme, based on the BBG HIBE [BBG05] (as
HIBS schemes are implied by HIBE schemes). For more details on this construction we refer the
reader to [KMPR05].

5.2.2 Extensions

History-Hiding AOS. In [BBW07] the authors require an additional property from AOS
which they call history-hiding. Informally, this means that one considers sets of messages
instead of sequences, and it is required that no PPT adversary can efficiently decide in which
order messages were appended. Their construction builds upon symmetric bilinear pairings
e : G × G → GT over groups of prime order p and a hash function H : {0, 1}∗ → G. More
precisely, in their scheme they have (skAOS, pkAOS) ← (gα, (g, e(g, g)α)), where α←R Zp and g
generates G. A signature on a message M = (m1, . . . ,mn) is

σ = (gα ·
n∏
i=1

H(mi)
ri ,

n⋃
i=1

{(mi, ri)}),

which can be easily verified using the bilinear pairing e, σ and pkAOS. Finally, we note that
quite recently history hiding AOS [LJYP15] that fit in the P -homomorphic signature framework
(cf. Section 2.4) were proposed.

Bounded Vector Signatures. Bounded vector signatures (BVS) [WCR11] target a slightly
different set of malleable operations. That is, they allow to sign vectors, where signatures are
malleable with respect to increasing the values of the entries in the signed vectors up to some
predefined maximum value. The authors informally discuss how BVS can be used to obtain
signatures on sets and multisets (somewhat similar to history-hiding AOS). Basically, their
approach is to assign each possible element in the (multi-)set to a dimension in the vector and
to use the vector entries to count the amount of the respective elements in the (multi-)set (for
sets, this amount can either be 0 or 1, whereas this value can be larger for multisets).

5.3 Sanitizable Signatures

With sanitizable signatures, a signer can issue signatures on messages consisting of fixed and
modifiable blocks. While the fixed blocks cannot be changed without invalidating the signature,
modifiable blocks can later be changed (sanitized) by some dedicated party (the sanitizer)
without invalidating the signature. With sanitizable signatures, replacements for modifiable
(admissible) message blocks can be chosen arbitrarily by the sanitizer.

Sanitizable signatures were firstly introduced in [ACdMT05] and rigorously formalised in [BFF+09].
Subsequently, we present the formalization of [BFF+09].
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5.3.1 Formal Definition

A sanitizable signature scheme consists of the subsequent set of efficient (PPT) algorithms. As
the exact instantiation of these algorithms differs strongly between the various existing schemes,
this section describes each algorithm on the level of its input and output. The entity denoted
by signer is always the initial signer of a given message m and sanitizer denotes the entity that
is authorised to sanitize the signed message 17.

Definition 73 (Sanitizable Signature Scheme). SSS consists of at least seven probabilistic poly-
nomial time (PPT) algorithms (KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge), such that:

Key Generation.

There are two key generation algorithms, one for the signer and one for the sanitizer.
Both create a pair of keys consisting of a private key and the corresponding public key:

(pksig, sksig)← KGensig(1
κ), (pksan, sksan)← KGensan(1κ).

The security parameter is denoted as κ.

Signing.

The Sign algorithm takes as input a message m = (m[1], . . . ,m[`]), with each block
m[i] ∈ {0, 1}∗, the signer’s secret key sksig, the sanitizer’s public key pksan, as well as
a description ADM of the admissibly modifiable blocks. ADM is a set containing just
those blocks’ indices which are modifiable by the sanitizer. It outputs a signature σ and
the message (or ⊥ on error):

(m,σ)← Sign(m, sksig, pksan, ADM).

We assume that ADM is always recoverable from any signature σ 6= ⊥ by the sanitizer
holding the secret key sksan that corresponds to pksan.

Sanitizing.

Algorithm Sanit takes a message m = (m[1], . . . ,m[`]), with each block m[i] ∈ {0, 1}∗,
a modification instruction MOD, a signature σ, the signer’s public key pksig and the
sanitizer’s secret key sksan. It modifies the message m according to the modification
instruction MOD, which contains pairs (i,m[i]′) for those blocks that shall be modified.
Sanit generates a signature σ′ for the modified message m′ ← MOD(m). Then Sanit
outputs m′ and σ′ (or ⊥ in case of an error).

(m′, σ′)← Sanit(m,MOD, σ, pksig, sksan).

17Note, this section uses an array-like notation to index the parts of a message for SSSs without loss of generality.
How a structured, unstructured or partly structured message is decomposed into parts must be described by each
SSS instantiation individually.
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Verification.

The Verify algorithm outputs a decision as a bit d ∈ {1, 0} indicating the validity of the
signature σ for the message m with respect to the public keys pksig and pksan.

d← Verify(m,σ, pksig, pksan).

Proof.

The Proof algorithm takes as input the signer’s secret key sksig, a message m = (m[1], . . . ,
m[`]), with each block m[i] ∈ {0, 1}∗, and a signature σ as well a set of (polynomially
many) additional message/signature pairs (mi, σi)i=1,2,...,k and the public key pksan. It
outputs a string π ∈ {0, 1}∗:

π ← Proof(sksig,m, σ, (m1, σ1), . . . , (mk, σk), pksan).

Judge.

Algorithm Judge takes as input a message m = (m[1], . . . ,m[`]), with each block m[i] ∈
{0, 1}∗ and a valid signature σ, the public keys of the parties pksig and pksan and a proof
π. It outputs a decision d ∈ {Sig, San} indicating whether the message/signature pair
has been created by the signer or the sanitizer (or ⊥ in case of an error):

d← Judge(m,σ, pksig, pksan, π).

5.3.2 Security Properties

In this section we give an overview of the most common security properties for SSS. We restate
them in a harmonised notation, adopting them by the latest results.

For sanitizable signatures the mandatory security properties are correctness, unforgeability,
immutability, transparency, privacy and accountability (sanitizer-accountability and signer-
accountability). Other relevant properties that can be valuable in several scenarios are strong
privacy [dMPPS14], (strong) unlinkability [BFLS10, BPS13] as well as non-interactive (public)
accountability [BPS12].18

Correctness of SSS

SSS are assumed to work correctly. That is, the formally defined correctness properties signing
correctness, sanitizing correctness and proof correctness as presented in [BFF+09, BPS12] hold.
For readability these are restated in the harmonised notation in the following:

18Note that public accountability prohibits transparency. Yet, as detailed in [BPS12], public accountability
can be useful in various applications which do not necessarily require transparency.
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Definition 74 (Signing correctness for SSS [BFF+09]). All genuinely signed messages (m,σ)
are accepted as valid by Verify.

For any security parameter κ, any key pair (sksig, pksig) ← KGensig(1
κ), any key

pair (sksan, pksan) ← KGensan(1κ), any message m ∈ {0, 1}∗, any ADM and any
σ ← Sign(m, sksig, pksan, ADM) we have

Verify(m,σ, pksig, pksan) = 1.

Definition 75 (Sanitizing correctness for SSS [BFF+09]). All genuinely sanitized messages
(m,σ) are accepted as valid by Verify.

For any security parameter κ, any key pair (sksig, pksig)← KGensig(1
κ), any key pair

(sksan, pksan)← KGensan(1κ), any message m ∈ {0, 1}∗, any σ with Verify(m,σ, pksig,
pksan) = 1, any MOD matching ADM from σ, and any pair (m′, σ′) ← Sanit(m,
MOD,σ, pksig, sksan) we require

Verify(m′, σ′, pksig, pksan) = 1.

Definition 76 (Proof correctness for SSS [BFF+09]). Every genuinely created proof by the
signer leads the Judge to decide in the signer’s favour.

For any security parameter κ, any key pair (sksig, pksig) ← KGensig(1
κ), any key

pair (sksan, pksan) ← KGensan(1κ), any message m ∈ {0, 1}∗, any signature σ any
MOD matching ADM from σ, any (m′, σ′) ← Sanit(m,MOD, σ, pksig, sksan) with
Verify(m′, σ′, pksig, pksan) = 1, and any (polynomially many) m1, . . . ,mq and ADM1,
. . . , ADM q with σi ← Sign(mi, sksig, pksan, ADM i) and (m,σ) = (mi, σi) for some
i, any π ← Proof(sksig,m

′, σ′,m1, σ1, . . . ,mq, σq, pksan) we require:

Judge(m′, σ′, pksig, pksan, π) = San.

As mentioned before, ADM is required to always be correctly recoverable from a valid message-
signature pair (m,σ) [BFF+09]. Furthermore, [GQZ11] additionally require that unauthorized
modifications of ADM count as forgeries (see also [SPPdM12b]). These have been incorporated
in the following security property definitions.

Definition 77 (ADM recovery correctness). Every genuinely created message-signature pair
(m,σ) allows recovering ADM correctly.

Unforgeability for SSS

Unforgeability guarantees that a valid signature on a message can only be generated by the
signer as it requires knowledge of sksig, or by a sanitizer, requiring knowledge of sksan. Note
that valid sanitizations are excluded from being forgeries.

Definition 78 (Unforgeability for SSS [BFF+09, GQZ11]). A SSS is unforgeable, if for any
efficient (PPT) adversary A the probability that the game depicted in Exp. 1 returns 1, is
negligible (as a function of κ).
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Experiment UnforgeabilitySSSA (κ)
(pksig, sksig)← KGensig(1κ)

(pksan, sksan)← KGensan(1κ)

(m∗, σ∗)← ASign(·,sksig ,··· )Proof(·,sksig ,··· ),Sanit(··· ,sksan)(pksig, pksan)

for i = 1, 2, . . . q let (mi, ADM i, pksan,i) and σi
denote the queries and answers to and from oracle Sign
for j = q + 1, . . . , r let (mj ,MODj , σj , pksig,j) and (m′j , σ

′
j)

denote the queries and answers to and from oracle Sanit
return 1, if

Verify(m∗, σ∗, pksig, pksan) = 1 and

∀i ∈ {1, 2, . . . , q} : (pksan,m
∗) 6= (pksan,i,mi) and

∀j ∈ {1, 2, . . . , q′} : (pksig,m
∗) 6= (pksig,j ,m

′
j)

Experiment 1: Unforgeability experiment for SSSs based on [BFF+09, GQZ11]

Immutability for SSS

Immutability prevents a sanitizer from modifying any block(s) not marked as admissible for
this sanitizer by the signer. That is, a sanitizer must not be able to alter a given message in
a malicious way. In particular, it must only be able to alter admissible blocks. Hence, also
deleting or appending blocks must be prohibited.

The following definition is from [PS15], where ADM(MOD) = 1 means that MOD only
contains modifications which are admissible.

Definition 79 (SSS Immutability [PS15]). An SSS is immutable, if for any efficient adversary
A the probability that the experiment depicted in Exp. 2 returns 1, is negligible (as a function
of κ).

Experiment ImmutabilitySSSA (κ)
(pksig, sksig)← KGensig(1κ)

(m∗, σ∗, pk∗)← ASign(sksig ,·,·),Proof(sksig ,·,·,·,·)(pksig)
for i = 1, 2, . . . , q let (mi, pksan,i, ADM i) index the queries to oracle Sign

return 1, if
Verify(m∗, σ∗, pksig, pk∗) = 1, and

∀i ∈ {1, 2, . . . , q} : pk∗ 6= pksan,i or m∗ /∈ {MOD(mi) |MOD with ADM i(MOD) = 1}

Experiment 2: Immutability experiment for SSSs [PS15]

Privacy for SSS

This definition follows from the original one given in [BFF+09], and the idea is based on the
indistinguishability notion for encryption, i.e., the adversary shall not be able recover sanitized
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parts of the message. We note that it only considers outsiders as privacy adversaries, i.e., the
adversary has no knowledge of any private key(s). See Sect. 5.3.2 for a stronger notion. Note,
in standard privacy the adversary is not able to generate any signatures itself nor does it not
know the secret key sksig.

Definition 80 (Privacy for SSS [BFF+09]). A SSS is private, if for any efficient (PPT) adver-
sary A the probability that the experiment PrivacySSSA (κ) given in Exp. 3 returns 1 is negligibly
close to 1

2 (as a function of κ).

Experiment PrivacySSSA (κ)
(pksig, sksig)← KGensig(1κ)

(pksan, pksan)← KGensan(1κ)
b← {0, 1}
a← ASign(sksig ,··· ),Sanit(··· ,sksan)

Proof(sksig ,··· ),LoRSanit(··· ,sksig ,sksan,b)(pksig, pksan)

where oracle LoRSanit on input of
m0,i,MOD0,i,m1,i,MOD1,i, ADM i:

if MOD0,i 6⊆ ADM i, return ⊥
if MOD1,i 6⊆ ADM i, return ⊥
if MOD0,i(m0,i) 6= MOD1,i(m1,i), return ⊥
let (mi, σi)← Sign(mb,i, sksig, pksan, ADM i)
return (m′i, σ

′
i)← Sanit(mi,MODb,i, σ, pksig, sksan)

return 1, if a = b

Experiment 3: Privacy experiment for SSS based on [BFF+09]

Note, the adversary is able to define the input to the LoRSanit oracle. However, the inner
working, in particular the signature σi, is not given to the adversary [BFF+09].

Strong Privacy for SSS

This property has been introduced in [dMPPS14]. The experiment in Exp. 4 for strong privacy
only differs from the standard privacy experiment (see Sect. 5.3.2 and Exp. 3) in one facet: The
secret sanitizer key sksan is given to the adversary A as a third parameter.

Definition 81 (Strong Privacy for SSS [dMPPS14]). A SSS is strongly private, if for any
efficient adversary A the probability that the experiment StrongPrivacySSSA (κ) given in Exp. 4
returns 1 is negligibly close to 1

2 (as a function of κ).

In the strong privacy game (cf. Exp. 4) the adversary can use signature and proof oracles to
generate and verify signed messages, as in the standard privacy definition. The difference is
that the adversary does no longer need the oracle for sanitizing, as it can sanitize messages
using sksan. To breach privacy, the adversary has to decide which of two input messages was
randomly chosen and used by the oracle to produce the signed outcome. The adversary gives
two crafted input messages and modification instructions to the LoRSanit oracle. Note that—as
in the standard privacy definition—the adversary is still not generating any of the challenge
sanitizations itself. Again, trivial ways to win the game are excluded.
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Experiment StrongPrivacySSSA (κ)
(pksig, sksig)← KeyGensig(1κ)

(pksan, sksan)← KeyGensan(1κ)
b← {0, 1}
a← ASign(·,sksig ,pksan,·),Proof(sksig ,··· ,pksan),LoRSanit(··· ,sksig ,sksan,b)(pksig, pksan, sksan)

where oracle LoRSanit on input of:
m0,MOD0,m1,MOD1, ADM
if MOD0(m0) 6= MOD1(m1), return ⊥
if MOD0 6⊆ ADM , return ⊥
if MOD1 6⊆ ADM , return ⊥
let (m,σ)← Sign(mb, sksig, pksan, ADM)
return (m′, σ′)← Sanit(m,MODb, σ, pksig, sksan)

return 1, if a = b

Experiment 4: Strong privacy experiment for SSS [dMPPS14]

Unlinkability for SSS

Unlinkability makes it infeasible for third parties to link sanitized message-signature pairs to
their source message-signature pairs. In the following we present the definition of unlinkability:

Definition 82 (Unlinkability for SSS [BFLS10]). A SSS is unlinkable if for any efficient algo-
rithm A the probability that the following experiment UnlinkabilitySSSA (κ)in Exp. 5 returns 1 is
negligibly close to 1/2 (as a function of κ).

Strong Unlinkability for SSS

In [BPS13], a strengthened unlinkability notion for sanitizable signatures was presented. The
difference of this notion to the conventional unlinkability notion is as follows: The LoRSanit
oracle does not have a fixed signer key pksig and the adversary is allowed to choose pksig. This
essentially means that unlinkability even holds for signers. We refer the reader to [BPS13] for a
discussion of the exact benefits, e.g., being able to guarantee unlinkability and therefore privacy
is preserved even if the signer looses its secret key.

Definition 83 (Strong Unlinkability for SSS [BPS13]). A SSS is strongly unlinkable, if for
any efficient algorithm A the probability that the experiment StrongUnlinkabilitySSSA (κ) given in
Exp. 6 returns 1 is negligibly close to 1

2 (as a function of κ).

Remark 1. Information leakage through the message itself is out of scope.

Remark 2. Unlinkability is stronger than privacy.
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Experiment UnlinkabilitySSSA (κ)
(pksig, sksig)← KGensig(1κ)

(pksan, pksan)← KGensan(1κ)
b← {0, 1}
a← ASign(sksig ,··· ),Sanit(··· ,sksan)

Proof(sksig ,··· )LoRSanit(··· ,sksan,sksig ,b)(pksig, pksan)

where oracle LoRSanit on input of:
m0,i,MOD0,i, σ0,i,m1,i,MOD1,i, σ1,i

//ADM needs to be recoverable from all σ
if ADM0,i 6= ADM1,i, return ⊥
if MOD0,i 6⊆ ADM0,i, return ⊥
if MOD1,i 6⊆ ADM1,i, return ⊥
if MOD0,i(m0,i) 6= MOD1,i(m1,i), return ⊥
if Verify(m0,i, σ0,i, pksig, pksan) 6= 1 or

Verify(m1,i, σ1,i, pksig, pksan) 6= 1, return ⊥
return (m′, σ′)← Sanit(mb,i,MODb,i, σb,i, pksig, sksan)

return 1, if a = b

Experiment 5: Unlinkability experiment for SSSs based on [BFLS10]

Experiment StrongUnlinkabilitySSSA (κ)
(pksan, sksan)← KGensan(1κ)
b← {0, 1}
a← ASanit(··· ,sksan),LoRSanit(··· ,sksan,b)(pksan)

where oracle LoRSanit on input of
m0,MOD0, σ0,m1,MOD1,i, σ1, pksig:

if ADM0 6= ADM1, return ⊥
if MOD0 6⊆ ADM0, or MOD1 6⊆ ADM1, or MOD0(m0) 6= MOD1(m1), return ⊥
if Verify(m0, σ0, pksig, pksan) 6= 1 or Verify(m1, σ1, pksig, pksan) 6= 1, return ⊥
return (m′, σ′)← Sanit(mb,MODb, σb, pksig, sksan)

return 1, if a = b

Experiment 6: Strong unlinkability experiment for SSS from [BPS13]

Transparency for SSS

Transparency prevents third parties, e.g., verifiers, to decide whether the signer or the sanitizer
created a certain (valid) message-signature pair (m,σ).

In a transparent scheme, the adversary as a verifier is not able to decide whether the message-
signature pair carries a signature created through Sanit or a freshly produced signature generated
by Sign. The property of transparency is a stronger privacy notion, but not required in all
applications of SSS (cf. [BPS12]). However, it is of importance if the existence of a sanitizer
has to be hidden. For example if visible sanitizations imply disadvantages for any involved party
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as it has been discussed in [SPPdM12a, dMPPS13, BFF+09].

A transparent SSS still offers the possibility to determine the accountability for a message by
the execution of the Judge algorithm. The algorithm Judge requires additional input from the
Proof algorithm. The adversary can not run the Proof algorithm itself as it requires the signer
who has access to the needed secret. To keep the adversary as strong as possible, the adversary
is given access to signing and sanitizing oracles, as well as a proof oracle. Hence, the adversary
can control the input and observe the output of all secret based algorithms.

Definition 84 (Transparency for SSS [BFF+09]). A SSS is proof-restricted transparent, if for
any efficient algorithm A the probability that the experiment TransparencySSSA (κ) given in Exp. 7
returns 1 is negligibly close to 1

2 (as a function of κ).

Remark 3. For obvious reasons, the access to the proof-oracle is limited, i.e., its use is excluded
for the given (m,σ).

Remark 4. Information leakage through the message itself is out of scope.

Remark 5. Transparency is stronger than privacy.

Experiment TransparencySSSA (κ)
(pksig, sksig)← KGensig(1κ)

(pksan, sksan)← KGensan(1κ)
b← {0, 1}
a← ASign(·,sksig ,··· ),Sanit(··· ,sksan),Proof(sksig ,··· ),Sanit/Sign(··· ,sksig ,sksan,b)(pksig, pksan)

where Sanit/Sign for input m,MOD,ADM :
σ ← Sign(m, sksig, pksan, ADM),
(m′, σ′)← Sanit(m,MOD, σ, pksig, sksan)

if b = 1:
σ′ ← Sign(m′, sksig, pksan, ADM),

finally return (m′, σ′).
if A has queried any message output by Sanit/Sign to Proof,

return a random bit
else,

return 1, if a = b

Experiment 7: Transparency experiment for SSS from [BFF+09]

Accountability: Interactive Non-Public Signer Accountability for SSS

Signer accountability prohibits a sanitizer from being able to blame the signer if indeed the
sanitizer is responsible for a given message.

Definition 85 (Interactive Non-Public Signer-Accountability for SSS ([BFF+09, GQZ11])). A
SSS is interactive non-public signer accountable, if for any efficient algorithm A the probability
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that the experiment Sig-AccSSSA (κ) given in Exp. 8 returns 1 is negligible (as a function of κ) and
additionally the Judge algorithm requires a proof π generated by Proof needing sksig as input to
the Proof.

Experiment Sig-AccSSSA (κ)
(pksan, sksan)← KGensan(1κ)
b← {0, 1}
(pk∗, π∗,m∗, σ∗)← ASanit(··· ,sksan)(pksan)

for i = 1, . . . , q let (m′i, σ
′
i)

denote the answers and queries from and to the oracle Sanit
return 1, if:

Verify(m∗, σ∗, pk∗, pksan) = 1, and
∀i ∈ {1, . . . , q} : (pk∗,m∗, ADM∗) 6= (pksig,i,m

′
i, ADM i), and

Judge(m∗, σ∗, pk∗, pksan, π
∗) = San

Experiment 8: Interactive non-public signer accountability experiment for SSS based
on [BFF+09, GQZ11]

The interactive non-public signer accountability experiment in Fig. 8 has been extended accord-
ing to [GQZ11], i.e., the admissible parts ADM are explicitly stated inside the game.

Accountability: Interactive Non-Public Sanitizer Accountability for SSS

sanitizer accountability prohibits a signer from being able to blame the sanitizer if indeed the
signer is responsible for a given message.

Definition 86 (Interactive Non-Public Sanitizer-Accountability for SSS ([BFF+09, GQZ11])).
A sanitizable signature scheme SSS is interactive non-public sanitizer accountable, if for any
efficient algorithm A the probability that the experiment San-AccSSSA (κ) given in Exp. 9 returns
1 is negligible (as a function of κ) and additionally the Judge algorithm requires a proof π
generated by Proof algorithm needing sksig as input to the Proof.

Interactive non-public sanitizer accountability are extended according to [GQZ11] by explicitly
stating the description of admissible parts ADM inside the games.

Public Non-Interactive Accountability for SSS

A sanitizable signature scheme satisfies non-interactive public accountability, if and only if for a
valid message-signature pair (m,σ), a third party can correctly decide whether (m,σ) originates
from the signer or from the sanitizer without interacting with the signer or sanitizer, i.e., just
from using public knowledge (m,σ, pksig, pksan).

This notion has been introduced in [BPS12] to obtain the same verification workflow that is
present in regular digital signatures schemes and in particular to argue about the legal value of
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Experiment San-AccSSSA (κ)
(pksig, sksig)← KGensig(1κ)

b← {0, 1}
(pk∗,m∗, σ∗)← ASign(··· ,sksig ,··· ),Proof(sksig ,··· )(pksig)

let (mi, ADM i, pksan,i) and σi for i = 1, . . . , q
denote the queries to the oracle Sign

π ← Proof(sksig,m
∗, σ∗, {(mi, σi) | 0 < i ≤ q}, pk∗)

return 1, if:
Verify(m∗, σ∗, pksig, pk∗) = 1, and

∀i ∈ {1, . . . , q} : (pk∗san,m
∗, ADM∗) 6= (pksan,i,mi, ADM i), and

Judge(m∗, σ∗, pksig, pk∗, π) = Sig

Experiment 9: Interactive non-public sanitizer accountability experiment for SSS based
on [BFF+09, GQZ11]

evidence created by SSS. In public non-interactive accountable schemes, the algorithm Judge
must decide correctly even on an empty proof π. As only Proof needs a secret key, this captures
the required form of public accountability.

Definition 87 (Non-Interactive Public Accountability for SSS [BPS12]). A sanitizable signa-
ture scheme SSS is non-interactive publicly accountable, if Proof = ⊥ and if for any efficient
algorithm A the probability that the experiment PubaccountabilitySSSA (κ) given in Exp. 10 returns
1 is negligible (as a function of κ). The basic idea is that an adversary, i.e., the sanitizer or
the signer, has to be able to make the Judge decide wrongly on an empty proof π.

Like with the interactive accountability notions, an adversary, e.g., the sanitizer or the signer,
has to be able to make the algorithm Judge decide incorrectly in their favour. This results in
the requirement that the adversary must either provide a message-signature pair (m∗, σ∗) for
which Judge decides San even if it was never been output by Sanit or decide Sig even if it was
never been output by Sign.

The authors also introduced this accountability notion for the level of blocks in [BPS12]. We skip
this, as we will subsequently discuss the work in [dMPPS13], which introduces the generalisation
of this notion: groups of blocks.

Group-level Signer/Sanitizer Accountability for SSS

In [dMPPS13], the authors define accountability with a detail of group-level, while fully pre-
serving transparency on the message level. The notion is given in [dMPPS13] and continues
the initial work in [BPS12]. Informally, a SSS offers group-level accountability, if for all valid
message-signature pairs (m,σ) the algorithm Proof outputs a proof π which allows the algorithm
GJud to decide, if the given group-signature pair (grp[i], σ) originates from the signer or from
the sanitizer (even in the presence of malicious signers or sanitizers).

The authors of [BPS12] derived the notion of block-level non-interactive public accountability,
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Experiment PubaccountabilitySSSA (κ)
(pksig, sksig)← KGensig(1κ)

(pksan, sksan)← KGensan(1κ)

(pk∗,m∗, σ∗)← ASign(·,sksig ,·,·),Sanit(·,·,·,·,sksan)(pksig, pksan)

Let (mi, ADM i, pksan,i) and σi for i = 1, 2, . . . , k

be the queries and answers to and from oracle Sign
return 1 if

(pk∗,m∗) 6= (pksan,i,mi) for all i = 1, 2, . . . , k, and

Verify(m∗, σ∗, pksig, pk∗) = 1, and

Judge(m∗, σ∗, pksig, pk∗,⊥) = Sig

Let (mj ,MODj , σj , pksig,j) and (m′j , σ
′
j) for j = 1, 2, . . . , k′

be the queries and answers to and from oracle Sanit
return 1 if

(pk∗,m∗) 6= (pksig,j ,m
′
j) for all j = 1, 2, . . . , k′, and

Verify(m∗, σ∗, pk∗, pksan) = 1, and
Judge(m∗, σ∗, pk∗, pksan,⊥) = San

return 0.

Experiment 10: Non-interactive public accountability for SSS from [BPS12]

i.e., a third party can decide which party is accountable for each block m[i]. The following
definitions already target groups of blocks.

Definition 88 (Group-Level Non-Interactive Public Accountability for SSS ( [dMPPS13])).
A sanitizable signature scheme SSS (together with an algorithm Detect) is group-level non-
interactive publicly accountable, if for any efficient algorithm A the probability that the ex-
periment Group− Pub− AccSSSA (κ) given in Exp. 11 returns 1 is negligible (as a function of
κ).

The additional Detect algorithm allows to non-interactively and publicly decide who is account-
able for a given block and is defined in [dMPPS13] as follows with d ∈ {Sig, San,⊥}:

d← Detect(m,σ, pksig, pksan, i).

Additionally, [dMPPS13] introduced a fine-grained scope for interactive non-public account-
ability, which allows to achieve transparency as well as block-level accountability. This is an
improvement over the paper from [BPS12], who initially introduced the paradigm of treating
properties on the block-level. In [BPS12], they required to sacrifice transparency.

The additional algorithm GJud is defined in [dMPPS13] as follows:

d← GJud(m,σ, pksig, pksan, π, i).

This algorithm GJud adapts the standard accountability property achieved via the Judge algo-
rithm on the message-level to a scope of individual blocks. Properties for each block individually
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can be emulated by the above if each block is in its own new group. Message-level properties,
e.g., like in [BFF+09], are emulated by having just one single group containing all admissible
blocks.

Experiment Group− Pub− AccSSSA (κ)
(pksig, sksig)← KGensig(1κ)

(pksan, sksan)← KGensan(1κ)

(pk∗,m∗, σ∗)← ASign(·,sksig ,·,·,·),Sanit(·,·,·,·,sksan)(pksan, pksig)
Let (mi, ADM i, pksan,i,grpi) and (mi, σi) for i = 1, 2, . . . , k

be the queries and answers to and from oracle Sign.
Let (mj ,MODj , σj , pksig,j) and (m′j , σ

′
j) for j = 1, 2, . . . , k′

be the queries and answers to and from oracle Sanit.
return 1 if

Verify(m∗, σ∗, pksig, pk∗) = 1, and

∃q : Detect(m∗, σ∗, pksig, pk∗, q) = Sig

(grp[q]∗, pk∗) was never queried to Sign
as a group of any mi queried

return 1, if
Verify(m∗, σ∗, pk∗, pksan) = 1, and
∃q : Detect(m∗, σ∗, pk∗, pksan, q) = San

(grp[q]∗, pk∗) was never queried to Sanit
as a group of any MODi

return 0

Experiment 11: Group-level non-interactive public accountability experiment for SSS
from [dMPPS13]

Definition 89 (Group-level Signer Accountability for SSS [dMPPS13]). A sanitizable signature
scheme SSS is group-level signer accountable, if for any efficient algorithm A the probability that
the experiment Group− Signer − AccSSSA (κ) given in Exp. 12 returns 1 is negligible (as a function
of κ). Basically, to win the game the adversary has to generate a tuple (pk∗,m∗, σ∗, π∗), which
leads GJudge to decide that the sanitizer is accountable for a group grp[q] ∈ m∗, while it is not.

Definition 90 (Group-level Sanitizer Accountability for SSS [dMPPS13]). A sanitizable sig-
nature scheme SSS is group-level sanitizer accountable, if for any efficient algorithm A the
probability that the experiment Group− Sanitizer − AccSSSA (κ) given in Exp. 13 returns 1 is neg-
ligible (as a function of κ). Basically, to win the game the adversary has to generate a tuple
(pk∗,m∗, σ∗) for which Proof generates a proof π which leads Judge to decide that the signer is
accountable for a group grp[q] ∈ m∗, while it is not.

5.3.3 Extensions

For sanitizable signatures we finally want to briefly discuss some extensions. Firstly, extensions
that limit the power of the sanitizer in the sense that the signer can define various limitations.
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Experiment Group− Signer − AccSSSA (κ)
(pksan, sksan)← KGensan(1κ)
b← {0, 1}
(pk∗, π∗,m∗, σ∗)← ASanit(·,·,·,·,sksan)(pksan)

Let (mj ,MODj , σj , pksig,j) and (m′j , σ
′
j) for j = 1, 2, . . . , k

be the queries and answers to and from oracle Sanit.
return 1, if:

Verify(m∗, σ∗, pk∗, pksan) = 1, and
∃q : GJud(m∗, σ∗, pk∗, pksan, π

∗, q) = San

(grp[q]∗, pk∗) was never queried to Sanit
as a group of any MODi

Experiment 12: Group-level signer accountability experiment for SSS from [dMPPS13]

Experiment Group− Sanitizer − AccSSSA (κ)
(pksig, sksig)← KGensig(1κ)

b← {0, 1}
(pk∗,m∗, σ∗)← ASign(·,sksig ,·,·),Proof(sksig ,·,·,·,·)(pksig)

Let (mi,MODi, σi, pksan,i,grpi) and (mi, σi) for i = 1, 2, . . . , k
be the queries and answers to and from the oracle Sign.

π ← Proof(sksig,m
∗, σ∗, {(mi, σi)|0 < i ≤ q}, pk∗)

return 1, if:
Verify(m∗, σ∗, pk∗, pksan) = 1, and
∃q : GJud(m∗, σ∗, pk∗, pksan, π

∗, q) = Sig and
(grp[q]∗, pk∗) was never queried to Sign
as a group of any mi

Experiment 13: Group-level sanitizer accountability experiment for SSS from [dMPPS13]

Secondly, extensions to the model of sanitizable signatures that support multiple entities (signers
and sanitizers) and a seperation of signing and declaring the sanitizer(s).

Extended Sanitizable Signatures (ESSS). In [KL06], Klonowski and Lauks informally
proposed several extensions to sanitizable signatures that allow to reduce the sanitizer’s power,
which were later formalized in [CJ10].

They proposed extensions (1) to limit the possible modifications to sets of allowed modifications
per message block (LimitSet), (2) to force the sanitizer to make the same changes in logically
linked blocks (EnforceModif), (3) to limit the number of modified blocks (LimitNbModif) upon
a single sanitization and (4) to limit the number of possible versions of a sanitized message
(LimitNbSanit).

Unfortunately, the formalization in [CJ10] does not define privacy in the original sense of sani-
tizable signatures, i.e., schemes which reveal the sets of allowed modifications for the LimitSet
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blocks upon verification of a (sanitized) signature can be proven to be private in their model.
To fix this issue, [DS15] strengthened the privacy notion for ESSS to reflect privacy in the orig-
inal sense. Besides that, [DS15] showed that ESSS fulfilling this stronger privacy notion can
be black-box constructed from any secure SSS in the model of [BFF+09] and indistinguishable
accumulators [DHS15].19

Sanitizable Signatures for Multiple Signers and Sanitizers. In [CJL12], the model of
sanitizable signatures has been extended from the single-user setting to the multi-user setting.
In particular, this generalized model supports multiple signers and sanitizers.

Trapdoor Sanitizable Signatures. In [CLM08] the authors introduced so called trapdoor
sanitizable signatures, where—instead of delegating to one or many sanitizers at the time of
signing—the signer can delegate the sanitization rights to (potentially) multiple sanitizers by
issuing a trapdoor at any time after the signature has been produced. This is achieved by
introducing an additional Trapdoor algorithm that—given a message, a signature and a secret
key—produces a trapdoor. An improved instantiation has later been proposed in [YSL10].
Since the constructions of [CLM08, YSL10] loose the accountability property, later in [LDW13]
accountable trapdoor sanitizable signatures have been introduced.

5.4 Redactable Signatures

In the case of redactable signature schemes (RSS) the modification of a signed message is limited
to the removal or blackening of parts (blocks) of a document without invalidating the signature.
Redactable signature schemes have been independently introduced in [JMSW02, SBZ01], and
are the basis for many subsequent works.

Here it is not required that the deletion is undetectable. One might think of a special symbol,
e.g., “�”, as a substitution of the previous information to denote that a redaction has taken
place. If the redaction is detectable, then there can be different levels of detection, e.g., the
length of the redacted content, or the position of the redacted blocks relative to the rest of the
message may be visible.

5.4.1 Formal Definition

The set of algorithms present in this section have been formalised in [BBD+10] initially for
tree-structured documents.

In the following, the entity of the signer always denotes the original signer of a given message
m and the redactor denotes an entity that is authorised to redact at least one block of this m
(typically any party is allowed to redact). Note, this section fixes the message’s structure to
ordered lists of message blocks for RSSs without loss of generality, i.e., an RSS in general can be

19We note that [DS15] is currently an unpublished manuscript, which will be made available on request.
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defined to work on any form of message. Regardless of its structure or even on fully or partially
unstructured message it is assumed that the actual RSS defines how the message is decomposed
into blocks.

Definition 91 (Redactable Signature Scheme). An RSS consists of at least four PPT algo-
rithms: (KeyGen, Sign,Redact,Verify). Note, all algorithms may output ⊥ in case of an error.

Key Generation.

There is a key generation algorithm for the signer, which creates one pair of keys con-
sisting of a private key and the corresponding public key, where κ denotes the security
parameter:

(pksig, sksig)← KeyGen(1κ).

Signing.

The Sign algorithm takes as input a message m = (m[1], . . . ,m[`]), with each block
m[i] ∈ {0, 1}∗, the signer’s secret key sksig. It outputs a signature σ and the message (or
⊥ on error):

(m,σ)← Sign(m, sksig).

It is assumed that ADM is always recoverable from any signature σ 6= ⊥ by the sanitizer.

Redact.

Algorithm Redact takes a message m = (m[1], . . . ,m[`]), with each block m[i] ∈ {0, 1}∗,
a modification instruction MOD, a signature σ, the signer’s public key pksig. It modifies
the message m according to the modification instruction MOD, which contains a set of
block indices (j0, . . . , jk) for those blocks that shall be removed. The algorithm Redact
generates an updated signature σ′ for the modified message m′ ← MOD(m). Then
Redact outputs m′ and σ′ (or ⊥ in case of an error).

(m′, σ′)← Redact(m,MOD, σ, pksig).

Note, the algorithm Redact requires no secret keys.

Verification.

The Verify algorithm outputs a decision as a bit d ∈ {1, 0} indicating the validity of the
signature σ for the message m with respect to the signer’s public key pksig.

d← Verify(m,σ, pksig).
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5.4.2 Security Properties

In this section we give an overview of the most common security properties for RSS. For
redactable signatures the security properties are correctness, unforgeability, privacy, trans-
parency, accountability, where the latter notion has only recently been introduced for RSS
in [PS15].

Correctness of RSS

In a nutshell, the correctness properties for RSS require that every genuinely signed message
must verify (signing correctness) and that every valid message that is genuinely redacted again
must verify (redaction correctness). Thereby, the signing correctness as presented for SSS
in [BFF+09] and in [BPS12] can be equivalently applied for RSS. For readability these are
restated here in the harmonised notation.

Definition 92 (Signing correctness for RSS (same as for SSS given in [BFF+09]). All genuinely
signed messages (m,σ) are accepted as valid by Verify.

For any security parameter κ, any key pair (pksig, sksig)← KeyGen(1κ), any message
m ∈ {0, 1}∗ and any σ ← Sign(m, sksig) we have

Verify(m,σ, pksig) = 1.

The sanitizing correctness defined for SSS in Definition 74 can not be re-used, as RSS misses
the notion of the sanitizer’s key. We take the redaction correctness, that was formalised for tree
structured data in [BBD+10].

Definition 93 (Redaction correctness for RSS ([BBD+10])). All genuinely redacted messages
(m,σ) are accepted as valid by Verify.

For any security parameter κ, any key pair (sksig, pksig)← KeyGen(1κ), any message
m ∈ {0, 1}∗, any σ with Verify(m,σ, pksig) = 1, any MOD, and any pair (m′, σ′)←
Redact(m,MOD, σ, pksig), we require

Verify(m′, σ′, pksig) = 1.

Unforgeability of RSS

Unforgeability guarantees that a valid signature on a message can only be generated by the
signer as it requires knowledge of sksig, or by a redactor, by correctly redacting a message which
already carries a valid signature and is in the redactor’s possession.

Remark 6. Valid redactions are excluded from being forgeries.

Definition 94 (Unforgeability for RSS [BBD+10]). A RSS is unforgeable, if for any efficient
(PPT) adversary A the probability that the game depicted in Exp. 14 returns 1, is negligible (as
a function of κ).
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Experiment UnforgeabilityRSSA (κ)
(pksig, sksig)← KeyGen(1κ)

(m∗, σ∗)← ASign(·,sksig)(pk)

for i = 1, . . . , q let mi denote the queries to oracle Sign
return 1, if

Verify(m∗, σ∗, pksig) = 1 and

m∗ /∈
⋃q
i=1 span�(mi)

Experiment 14: Unforgeability experiment for RSS from [BBD+10]

Privacy for RSS

A private scheme prevents verifiers from recovering any information (especially the original
value) about block(s) of m from redacted block(s) of m′, given m′ and a valid signature σ′ over
m′.

Remark 7. Information leakage through the modified message itself is out of scope.

Definition 95 (Privacy for RSS [BBD+10]). A redactable signature scheme RSS is private, if
for any efficient algorithm A the probability that the experiment PrivacyRSSA (κ) given in Exp. 15
returns 1 is negligibly close to 1

2 (as a function of κ).

Experiment PrivacyRSSA (κ)
(pksig, sksig)← KeyGen(1κ)

b
$← {0, 1}

a← ASign(·,sksig),LoRRedact(··· ,sksig ,b)(pk)

where oracle LoRRedact
for input m0,MOD0,m1,MOD1:
if MOD0(m0) 6= MOD1(m1), return ⊥
let (m,σ)← Sign(mb, sksig)
return (m′, σ′)← Redact(m,MODb, σ, pksig).

return 1, if a = b

Experiment 15: Privacy experiment for RSS from [BBD+10]

Transparency for RSS

Transparency prevents third parties, e.g., verifiers, to decide which party (signer or sanitizer)
is accountable for a given valid message-signature pair (m,σ).

Remark 8. Information leakage through the message itself is out of scope.

Remark 9. Transparency is stronger than privacy.
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Definition 96 (Transparency for RSS [BBD+10]). An RSS is transparent, if for any efficient
adversary A the probability that the experiment given in Exp. 16 returns 1 is negligibly close to
1
2 (as a function of κ).

In the experiment the adversary chooses the message m to be signed and also the target outcome
of the message’s redaction by providing MOD. The Redact/Sign oracle then chooses randomly
if it outputs the signature generated by signing the supplied message and then redacting it (case
b = 0) or if it outputs a fresh signature using Sign on the modified message’s contents. To win,
the adversary has to identify with a non negligible probability if a signature over a supplied
message was generated by Redact or Sign.

Experiment TransparencyRSSA (κ)
(pksig, sksig)← KGensig(1κ)

b← {0, 1}
a← ASign(·,sksig),Redact/Sign(·,·,sksig ,b)(pksig)

where oracle Redact/Sign for input m,MOD:
σ ← Sign(m, sksig)
(m′, σ′)← Redact(m,MOD, σ, pksig)
if b = 1: σ′ ← Sign(m′, sksig)
return (m′, σ′)

return 1, if a = b

Experiment 16: Transparency experiment for RSS based on [BBD+10]

Non-Interactive Public and Interactive Non-Public Accountability for RSS

Contrary to sanitizable signatures (SSS) described previously, accountability of redactions has
not been considered in the initial setting. It has only very recently been formalized in [PS15].

Recall, accountability allows to determine who is accountable for a given signature/message
pair (σ,m). Accountability makes it possible to deduct, maybe in an interactive protocol with
involvement of the signer, if a signature σ was created by the signer or by redaction of a
certain dedicated party. This requires an additional key-pair to be given to the redacting party,
making this operation no longer public, unless one would make the key public. This still gives
accountability in the sense that even in a transparent RSS, the signer could generate a proof to
a judge that the message was redacted, if it was indeed redacted.

Accountable redactable signatures (ARSS) as introduced in [PS15] offer “two different charac-
teristics” of accountability: an online form, where the original signer has to generate a proof,
and an offline version where anyone is able to determine the accountable party (called public
accountability).

The basic idea for a construction of an ARSS according to [PS15] is to use an SSS which
makes any RSS accountable by signing the original message m and the corresponding redactable
signature σRSS of that m using the SSS. While m and σRSS can be changed publicly by redaction
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using the RSS, the outer sanitizable signature can only be updated by dedicated and accountable
sanitizers using the SSS.

The ARSS needs to have additional algorithms, which are close in behaviour and definition than
those from the underlying SSS. For the sake of brevity these are not restated here and we refer
the reader to [PS15] for the details.

5.5 Overview of Constructions for Sanitizable and Redactable Signatures

Various constructions of RSS and SSS are provided in literature. Subsequently, we briefly discuss
underlying construction principles of some of those schemes and provide an overview in Table 6.

Sig. Scheme

Scheme R/S EU DET GS CH Acc Agg

[BFLS09] S X†,‡

[BPS12] S X†,‡

[BPS13] S X†,‡

[BFLS10] S X† X‡

[ACdMT05] S X† X‡

[BFF+09] S X† X‡

[dMPPS13] S X† X‡

[CLM08] S X† X‡

[GQZ11] S X† X‡

[BBD+10] R X
[PSPdM12] R X X
[ABC+12] R X
[PS14] R X
[IKO+07] R X
[SPB+12a] R X

Table 6: Overview of sanitizable/redactable signature constructions. Legend: R. . . redactable
signature scheme, S. . . sanitizable signature scheme, † . . . S-signer, ‡ . . . S-sanitizer,
EU. . . existentially unforgeable under chosen message attacks (EUF-CMA), DET. . . deterministic,
GS. . . anonymous non-frameable group signature scheme, CH. . . chameleon hash,
Acc. . . accumulator, Agg. . . aggregate signature scheme

Signature Based Schemes. These constructions just require the generation/verification of
usually two signatures created by a secure digital signature scheme. The basic idea is that the
signer signs the non-admissible, i.e., fixed, block(s) and some meta data identifying, among
others, the admissible block(s) or information identifying the dedicated sanitizer. Moreover,
the admissible block(s) are then signed either by the signer, in the original or by the sanitizer.
While the minimum requirement is that the scheme is EUF-CMA secure, some constructions
require additional properties for the underlying signature scheme (cf. Table 6). In particular,
the construction from [BPS12] requires just EUF-CMA while [BPS13] additionally requires
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the signature to be unique to achieve a stronger notion of privacy, i.e., unlinkability. The
construction from [BFLS10] requires a group signature scheme that is anonymous and non-
frameable to achieve unlinkability. Other schemes working solely with signatures are [BFLS09,
BBD+10]. Besides the aforementioned SSS, one can also trivially construct RSS only from
EUF-CMA secure digital signature schemes, with the drawback of a number of signature linear
in the number of (admissible) blocks (e.g., the naive constructions in [JMSW02]).

Chameleon-Hash Based Schemes. These constructions also require an EUF-CMA secure
signature, but require additionally that admissible block(s) can be modified without invalidat-
ing their hash values. This is achieved by means of chameleon-hashes (also known as trapdoor
commitments or chameleon blobs [Fis01]). Chameleon-hashes [KR00] are collision-free cryp-
tographic hash-functions in the traditional sense, unless one knows a secret trapdoor. This
trapdoor allows to compute arbitrary collisions for that function. Applied to SSS [ACdMT05],
the basic construction idea is to replace admissible blocks in the original message with their
chameleon-hashes and then to sign this modified message using an EUF-CMA secure signa-
ture scheme (using a scheme following the hash-then sign approach 1.3.3). The trapdoor of
the chameleon-hash function is then given to the sanitizer. For the used chameleon hash-
function it is important to be key-exposure free [AdM04b] and there are various constructions
available [ZSnS03, AdM04a, AdM04b, GWX07, CTZ09]. Further schemes that use chameleon-
hashing are [CLM08, BFF+09, GQZ11].

Accumulator or Aggregate Signature Based Schemes. Accumulator schemes [Bd93,
DHS15] are schemes that allow to accumulate a finite set into a succinct value called the ac-
cumulator. Then, for every element in the set, one can efficiently compute a so called witness
which certifies membership of the value in the accumulator, i.e, given the element the witness
and the accumulator everybody can check the membership of the element (so called univer-
sal accumulators [LLX07] additionally support non-membership witnesses). Such accumulator
schemes are a versatile tool, and allows using the membership witness function to verify remain-
ing elements after redacting the element and the witness [ABC+12, PSPdM12, PS14]. These
constructions either solely use accumulators [ABC+12, PS14] or use an EUF-CMA secure sig-
nature scheme to sign the accumulator [PSPdM12]. The scheme in [ABC+12] achieves a very
strong privacy notation, i.e., strong context-hiding, by being limited to “quoting of substrings”
rather than redaction of any block. Schemes based on aggregate signatures [BGLS03c], basically
either require every redactor (the signer is considered the initial redactor) to sign the respective
(redacted) document and aggregate it to the previous signature of the document [IKO+07] or
sign every single block of a document, aggregate the signatures and remove the signature of
redacted blocks from the aggregate [SPB+12a].

Hash-Tree Based Schemes. Initial works on redactable signatures [SBZ01, JMSW02] use
a Merkle hash-tree (or generalizations [SR10]) and consider the leaves as commitments (e.g.,
randomized hash values) to the message blocks where an EUF-CMA secure signature scheme
is used to sign the root hash of the Merkle tree. Note that these constructions must not be
confused with redactable signature for tree-structured data [BBD+10, SPB+12b].
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5.5.1 Other Constructions With Different Security Models

We note that there are several constructions, realizing what we have denoted as sanitizable
and redactable signature schemes, but using other terminology and —more importantly— an-
other security model. It has not been the focus of this report to investigate relations be-
tween these different concepts. However, for the sake of completeness we mention a line of
work in sanitization (which would be redaction in our terminology) and under different secu-
rity models [MIM+05, IKTY05, MHI08, HHH+08, YSLM08, NTKK09, HHM+11] and another
line of work of redactable signatures under different security notions [CDHK15]. Addition-
ally, there are other works considering schemes for document structures of trees and graphs
[KB08, KB10, KAB12], which have been shown to not achieve Brzuska et al.’s privacy [BBD+10]
or offer too weak integrity protection [SPB+12b, SPB+12a].

5.6 Related Concepts

Finally, for the sake of completeness we want to briefly discuss other classes of homomorphic
(algebraic) signatures which are not considered that relevant in context of Prismacloud.

5.6.1 Transitive Signatures

Transitive signatures have been introduced in [MR02]. The basic idea is to have a signature
scheme that allows to dynamically build an authenticated graph, edge by edge. Basically, if
one has a signature for edges {i, j} and {j, k} one is able to efficiently derive a signature for
edge {i, k} without requiring the secret singing key. Let us consider a graph G = (V,E) and let
the signer compute signatures for every edge {i, j} ∈ E ⊆ V × V , then the signer has actually
produced a signature for the graph being the transitive closure G∗ = (V ∗, E∗) of graph G, where
V ∗ = V and {i, j} is an edge of E∗ if there is path from i to j in G. Now, everybody being
only in possession of the public key of the signer and the signatures of edges in E can derive a
signature for any edge in E∗. For a various different constructions of transitive signatures for
undirected graphs we refer the reader to [BN05].

While constructions for undirected graphs are well studied, it is still an open issue to design
transitive signatures for directed graphs. So far, in the directed setting, only constructions for
directed trees are known [Yi07, Nev08, CH12].

5.6.2 (Graph-Based) Algebraic Signatures for Sets

In [HM02], so called graph-based algebraic signatures have been introduced. They represent
algebraic signatures constructed from graph-based one-time signatures. They represent signa-
tures on sets and are algebraic with respect to union and subset operations and also union and
super-intersection operations, where the super-intersection of two sets A and B is the collection
of all sets S such that such that A ∩B ⊆ S ⊆ A ∪B.

WP: WP4 Deliverable: D4.4 Page: 97 of 114
Reference: prismacloud.eu Dissemination: PU Version 1.0 Status: Final

http://prismacloud.eu


Privacy and Security Maintaining Services in the Cloud
Overview of Functional and Malleable Signature Schemes

We note that [JMSW02] (who also proposed redactable signatures already discussed extensively
in this section) also proposed algebraic signatures that are homomorphic with respect to union
and subset operations.
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6 Conclusion

In this report we have reviewed the state-of-the-art of functional and malleable signature
schemes. More precisely, in this report we have presented the following:

We have reviewed all existing general frameworks that cover functional as well as malleable
signature schemes.

We have reviewed certain classes of functional signature schemes that provide efficient construc-
tions usable in a practical setting. More precisely, we have presented proxy signature schemes,
blank digital signature schemes, policy-based signature schemes as well as attribute-based signa-
ture schemes. Due to known relations of certain types of functional signature schemes to other
variants of digital signatures, we have also briefly presented related concepts such as group
signature schemes and traceable signature schemes.

We have reviewed linearly homomorphic signature schemes, homomorphic signature schemes
for polynomial functions, fully homomorphic signature schemes, and homomorphic aggregate
signature schemes as the representatives of malleable signature schemes for arithmetics. As
first results within the Prismacloud project, besides reviewing the state-of-the-art, we have
investigated the use of aforementioned signature schemes in context of electronic voting, smart
grids, and electronic health records (cf. [TDB15]). As one of the most important directions
for future research with respect to malleable signature schemes for arithmetics, we consider
the efficiency of the constructions. This is especially important when it comes to schemes that
support large families of functions such as the very recent fully homomorphic signature schemes.

We have reviewed redactable and sanitizable signature schemes as the two important represen-
tatives of malleable signature schemes for editing. As first results within the Prismacloud
project we have closed the gap that the property of accountability was not considered for RSS
yet and have proposed the notion of accountable RSS [PS15]. As open questions remain investi-
gations between the various different models used in the literature and black-box constructions
among them.

The results presented within this report show that functional and malleable signatures are a
fruitful field of research. In particular it shows that they have attracted increasing interest and
that there have been a number of results within the recent years. Overall, the current state
of research for various classes of functional and malleable signature schemes already presents a
solid foundation for practical use, where for other classes there are still many open issues. Our
goal within Prismacloud is to close the gap to the practical application of all these classes of
schemes.
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[BBD+10] C. Brzuska, H. Busch, Ö. Dagdelen, M. Fischlin, M. Franz, S. Katzenbeisser,
M. Manulis, C. Onete, A. Peter, B. Poettering, and D. Schröder. Redactable
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D. Schröder, and F. Volk. Security of Sanitizable Signatures Revisited. In PKC’09,
volume 5443 of LNCS, 2009.

[BFG+13] D. Bernhard, G. Fuchsbauer, E. Ghadafi, N. P. Smart, and B. Warinschi. Anony-
mous Attestation with User-Controlled Linkability. Int. J. Inf. Sec., 12(3):219–
249, 2013.

[BFKW09] D. Boneh, D. Freeman, J. Katz, and B. Waters. Signing a linear subspace: Signa-
ture schemes for network coding. In Public Key Cryptography–PKC 2009, pages
68–87. Springer, 2009.

[BFLS09] C. Brzuska, M. Fischlin, A. Lehmann, and D. Schröder. Santizable Signatures:
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[dMPPS13] H. de Meer, H. C. Pöhls, J. Posegga, and K. Samelin. Scope of Security Properties
of Sanitizable Signatures Revisited. In ARES 2013, pages 188–197. IEEE, 2013.
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